Takuya Matsuzaki Univ. of Tokyo

Kenji Sagae Univ. of Tokyo Takashi Ninomiya Univ. of Tokyo

> Tadayoshi Hara Univ. of Tokyo

Yusuke Miyao Univ. of Tokyo

Combining Statistical Models with Symbolic Grammar in Parsing

Research on Advanced Natural Language Processing and Text Mining: aNT Grant-in-Aid for specially promoted research, MEXT (2006-2011)

Junichi TSUJII

Univ. of Tokyo Univ. of Manchester

IEEE ASRU Kyoto, Dec 11th, 2007

Sentence Parsing

Nerd

Parsing based on a proper linguistic formalism is one of the core research fields in CL and NLP.

It was considered as a monolithic, esoteric and inward looking field, largely dissociated from real world application.

IT Businessman

The field has matured, ready to be used by applications.

Integration of linguistic grammar formalisms with statistical models.

Robust, efficient and open to eclectic sources of information other than syntactic ones

...... Speech Understanding Speech/Text Retrieval

Deep parser which produces semantic representation

ルビノ 編集ビノ 表示(型) お気に入り(型) ツール(型) ヘルノ(μ(<u>F</u>)	編集(<u>E</u>)	表示⊙	お気に入り(<u>A</u>)	ツール①	ヘルプ(田)
-------------------------------------	---------------	----------------	-----	-------------------	------	--------

戻る・

🕥 - 🖹 🛃 🏠 🔎 検索 ☆ お気に入り 🤣 🖾 - 嫨 🔟 - 🛄 鑬 🤐

💯 🕘 http://nactem2.mc.man.ac.uk/medie/search.cgi?search_type=semantic_search&subject=p53&verb=activate&base_form=verb&ontology=

<u>FEDIE</u> — <u>See what causes cancer?</u>

MEDIE is a demo system presented by Tsujii Laborator

¥

🔿 移動

emantic Se	arch <mark>Keywo</mark>	rd Search	GCL Search					
	subject	Ve	erb	object				
	p53	a	ctivate		Search! Clear) <u>Help</u>		
vanced searc	<u>h</u>							
	Show	50 results	~	<u>Help</u>				
	Output format	: 💿 senter	nce Oarticle Otable	e <u>Help</u>				
	Keywords			Help				
	Modifiers	not		Help				
	Base form	🗌 subiec	t 🗹 verb 🔲 object 🛛	keyword <u>Help</u>				
	Ontology	📃 subjec	t 🗌 verb 🔲 object	<u>Help</u>				
	Category	subject a	ny 🛛 🝸 object any	✓ Help				
outes 4 EO fa	wmE2 antivata						DE OD accorda	JE 270 finished

sults **1-50** for **p53 activate** <u>»Show next</u> <u>»Show query</u>

35.82 seconds (5.37% finished

🙆 インターネット

. <u>PMID: 11212267</u> »хмь

KAI1/CD82 has been shown to be a metastasis suppressor for several human cancers , and a recent study revealed that wild-type tumor suppressor p53 can directly activate KAI1/CD82 gene expression .

. <u>PMID: 11162500</u> »хмь

However , in an in vitro transcription assay with partially purified basal transcription factors , p53 only partially activated transcription from the same binding site and required PAb421 for full activation .

_____PMID: 10521394 ...xmi

Grammar Formalism: HPSG

• HPSG = Lexical entries + Grammar rules

- Lexical entries: syntactic and semantic descriptions of word-specific behaviors
 - c.f. Enju grammar (Miyao et al 2004) has 3797 lexical entries for 10,536 words
- Grammar rules: non-word-specific syntactic and semantic configurations
 - c.f. Enju grammar has 12 grammar rules

propagation of information

An example of The information is mostly written in a a complex lexical entry Mapping a syntactic tree - passive in relative clause construction syntactic tree to the predicate argument structure SUBJ <> SLASH, REL¹ 20MP5 <> COMPS <> SPR < 11> features the HEAD verb HEAD noun explain non-SUBJ <> SUBJ <> local COMPS <> COMPS <> SPR < 1 > REL < 12 € dependencies prices HEAD verb WH 8UB.1 <> movement, COMPS <> SLASH < 2 topicalization, relative HEAD noun **HEAD** verb SUBJ < 3 >SUBJ <> 3 clauses COMPS <> COMPS <> SLASH_<2 we **CHARGE** HEAD verb HEAD *verb* Unknown Arg1 SUBJ < 3 >SUBJ < 3 >4 COMPS Arg2 Price SLASH < 2 Arg3 We charged were

• HPSG parsing (Pollard & Sag 1994)

- Mathematically well-defined with sophisticated constraint-based system
- Linguistically justified
- Deep syntactic grammar that provides semantic analysis
 10 years ago

Unrealistic solutions for real-world text, let alone real world speech

Combining HPSG with Statistical Models

Difficulties in HPSG Parsing

 Difficulty of developing a broad-coverage HPSG grammar

Difficulty of disambiguation

- No treebank for training an HPSG grammar
- No probabilistic model for HPSG

Efficiency

• Very slow : CFG filtering, Efficient search, Feature Forest

Difficulties in HPSG Parsing

 Difficulty of developing a broad-coverage HPSG grammar

Difficulty of disambiguation

- No treebank for training an HPSG grammar
- No probabilistic model for HPSG

Efficiency

• Very slow : CFG filtering, Efficient search, Feature Forest

Grammar with Broad Coverage

- Treebank for Grammar development and evaluation
 - Treebank grammar
 - Enju (Miyao et al. 2004)

- Treebank development
 - Redwood (Oepen et al. 2002)
 - Hinoki (Bond et al. 2004)

Sentences

HPSG Grammar

Grammar with Broad Coverage

 Treebank for Grammar development and evaluation

Performance of Semantic Parser

	Penn Treebank	GENIA
Coverage)
F-Value (PArelations)	87.4%	86.4%
Sentence Precison	39.2%	31.8%
Processing Time	0.68sec	1.00sec

Difficulties in HPSG Parsing

 Difficulty of developing a broad-coverage HPSG grammar

Difficulty of disambiguation

- No treebank for training an HPSG grammar
- No probabilistic model for HPSG

Efficiency

• Very slow : CFG filtering, Efficient search, Feature Forest

Probabilistic Model and HPSG

Probabilistic model

Log-linear model for unification-based

Grammars (Abney 1997, Johnson et al. 1999, Riezler et al. 2000, Miyao et al. 2003, Malouf and van Noord 2004, Kaplan et al. 2004, Miyao and Tsujii 2005)

Probabilistic HPSG

Probabilistic HPSG

All possible parse trees derived from \mathbf{w} with a grammar

 $p(T3|\mathbf{w})$ is the probability of selecting *T3* from *T1*, *T2*, ..., and *Tn*.

Probabilistic HPSG

- Log-linear model for unification-based grammars (Abney 1997, Johnson et al. 1999, Riezler et al. 2000, Miyao et al. 2003, Malouf and van Noord 2004, Kaplan et al. 2004, Miyao and Tsujii 2005)
 - Input: sentence w

•
$$\mathbf{w} = w_1/P_1, w_2/P_2, w_3/P_3, \dots, w_n/P_n$$

• Output: parse tree T

word POS

$$p(T | \mathbf{w}) = \frac{1}{Z} \exp(\sum_{u} \lambda_{u} f_{u}(T))$$

a weight for a feature function
normalization factor

Log-Linear Model Maximum Entropy Model

feature functions are indicators that indicate the properties that the parse tree has.

Log-Linear Model Maximum Entropy Model

feature functions are indicators that indicate the properties that the parse tree has.

Example of Features in Probabilistic HPSG

Example of Features in Probabilistic HPSG

Performance of Semantic Parser

	Penn Treebank	GENIA
Coverage)
F-Value (PArelations)	87.4%	86.4%
Sentence Precison	39.2%	31.8%
Processing Time	0.68sec	1.00sec

Difficulties in HPSG Parsing

 Difficulty of developing a broad-coverage HPSG grammar

Difficulty of disambiguation

- No treebank for training an HPSG grammar
- No probabilistic model for HPSG

Efficiency

• Very slow : CFG filtering, Efficient search, Feature Forest

Chart parsing

Beam Search and Iterative Widening Ninomiya 2005

Distribution of Parsing time for Sentence Length

(Black ... none) (Red ... Iterative Parsing)

Performance of Semantic Parser

	Penn Treebank	GENIA
Coverage	99.7%	99.2%
F-Value (PArelations)	87.4%	86.4%
Sentence Precison	39.2%	31.8%
Processing Time		2

Scalability of TM Tools - MEDIE Target Corpus: MEDLINE corpus

The number of papers	14,792,890
The number of abstracts	7,434,879
The number of sentences	70,815,480
The number of words	1,418,949,650
Compressed data size	3.2GB
Uncompressed data size	10GB

Scalability of TM Tools - MEDIE Target Corpus: MEDLINE corpus

Scalability of TM Tools - MEDIE Target Corpus: MEDLINE corpus

TM and GRID [Ninomiya 2006, Taura 2004]

Solution

- The entire MEDLINE were parsed by distributed PC clusters consisting of 340 CPUs
- Parallel processing was managed by grid platform GXP
- Experiments
 - The entire MEDLINE was parsed in 8 days
- Output
 - Syntactic parse trees and predicate argument structures in XML format

The data sizes of compressed/uncompressed output were 42.5GB/260GB.

More Accurate and Efficient Parser - Current Research -

Research on Advanced Natural Language Processing and Text Mining: aNT Grant-in-Aid for Specially promoted research, MEXT (2006-2011)

Selection of Lexical Entries

- Reference distribution of unigram lexical entry selection (Miyao & Tsujii 2005)
 - Filtering unlikely lexical entries during parameter estimation

$$p(T \mid \mathbf{w}) = p_{uni}(T \mid \mathbf{w}) \frac{1}{Z} \exp(\sum_{u} \lambda_{u} f_{u}(T))$$

reference distribution

Unigram lexical entry selection

$$p_{uni}(T \mid \mathbf{w}) = \prod_{i=1}^{n} p(l_i \mid w_i, P_i)$$

word POS

Selection of Lexical Entries Super-Tagging

- Reference distribution of unigram lexical entry selection (Miyao & Tsujii 2005)
 - Filtering unlikely lexical entries during parameter estimation

$$p(T | \mathbf{w}) = p_{uni}(T | \mathbf{w}) \frac{1}{Z} \exp(\sum_{u} \lambda_{u} f_{u}(T))$$

reference distribution
Super-tagger
$$p_{suptog}(T | \mathbf{w}) = \prod_{i=1}^{n} p(l_{i} | w_{i-1}, w_{i}, w_{i+1}, P_{i-2}, P_{i-1}, P_{i}, P_{i+1}, P_{i+2})$$

Super-tagging and HPSG

Deep Parser with Super-Tagging

Accuracy of predicate-argument dependencies and parsing time (Section $23 \leq 100$ words, Gold POS)

Model	Precision	Recall	F-Score	Avg. Time (ms/sentence)
Miyao & Tsujii (2005) (=unigram ref)	87.3%	86.5%	86.9%	604
Ninomiya et al. (2006) (=n-gram multi)	89.5%	88.6%	89.0%	152
Ninomiya et al.1 (2007) (=n-gram ref, fast and accurate)	89.8%	89.3%	89.5%	234
Ninomiya et al. 2 (2007) (=n-gram ref, slow but accurate)	90.3%	89.6%	89.8%	1379

Integrated Model vs. Staged Model

System Overview Matsuzaki, et.al. 2007

Enumaration of the maybeparsable LE assignments

Deterministic S-R Parser

argmax F(a, S, Q) = REDUCE(Head_Comp)

Experiment Results

	LP(%)	LR(%)	F1(%)	Avg. time
Staged/Deterministic model	86.93	86.47	86.70	30ms/snt
Previous method 1	87.35	86.29	86.81	183ms/snt
(Supertagger+ChartParser)				
Previous method 2	84.96	84.25	84.60	674ms/snt
(Unigram + ChartParser)				

6 times faster

20 times faster than the initial model

Richer Models Domain Adaptation

- Low parsing accuracy for different domains
 Ex.) *Enju*: trained on the Penn Treebank
 - Penn Treebank: 89.81 (F-score)
 - GENIA* (biomedical domain): 86.39 (F-score)
- Re-training a probabilistic model on the domain
- Small training data for the target domain
 - Penn Treebank: 39,832 sentences

GENIA*: 10,848 sentences (>> other domains)

Adaptation with Reference Distribution

Performance of Adaptation Models Hara 2007

Corpus size vs. accuracy

Training time vs. accuracy

Performance of Adaptation Models Hara 2007

Corpus size vs. accuracy

Training time vs. accuracy

Adaptation with Reference Distribution

NER and Knowledge-based Processing

Adaptation with Reference Distribution

Conclusions

Conclusions: Lessons

- A Deep Parser, which produces semantic representation, has become a practical option
- Integrated Model to Staged Model, lower level processings with rich context

Super-tagging and HPSG

Conclusions: Lessons

- A Deep Parser, which produces semantic representation, has become a practical option
- Integrated Model to Staged Model, lower level Processing with rich context
- Deterministic Parser with classifiers based on rich linguistic and extra-linguistic information

Conclusions: Lessons

- A Deep Parser, which produces semantic representation, has become a practical option
- Integrated Model to Staged Model, lower level Processing with rich context
- Deterministic Parser with classifiers based on rich linguistic and extra-linguistic information
 - Combination of Constraints & Preferences, more robust parsers

Thank You !

The field has matured, ready to be used by applications.

Integration of linguistic grammar formalisms with statistical models.

Robust, efficient and open to eclectic sources of information other than syntactic ones

...... Speech Understanding Speech/Text Retrieval

