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Adaptation

 Many forms of adaptation: MLLR and its 
variants, MAP adaptation, hybrids, 
eigenspace, language model adaptation, etc.

 Adaptation has been and will continue to be 
crucial to obtaining best ASR performance.

 Adaptation is an idea useful not only to 
speech recognition, but little attention given 
to why it works so well.
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Traditional Pattern Classification

 Vapnik gave us empirical risk minimization.

 Gave us a theory that we can use to predict, for a 
given distribution, how many training samples m 
to we need in order to help predict how poorly 
we will do.

 He gave us that some form of regularization is 
almost always necessary (unless we have lots of 
training data).

 … but this theory assumes that the training and 
(future) test distributions are identical.
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Standard Inductive Learning

 Given 
◦ a set of m samples (xi, yi) ~p(x, y)
◦ a decision function space F: X  { 1}

 Goal
◦ learn a decision function          that minimizes the expected 

error

 In practice
◦ minimize the empirical error

◦ while applying certain regularization strategy to achieve 
good generalization performance
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Why Is Regularization Helpful?

 Learning theory says

◦ Frequentist: Vapnik’s VC bound expresses Φ as a 
function of the VC dimension of F

◦ Bayesian: the Occam’s Razor bound expresses Φ as a 
function of the prior probability of f

 “Accuracy-regularization”
◦ We want to minimize the empirical error as well as 

the capacity or complexity term.
◦ Frequentist: support vector machines, MLPs with 

weight decay
◦ Bayesian: Bayesian model selection, Gaussian Prior.

empPr{ ( ) ( ) ( , , , ) } 1R f R f F f m
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Practical Work on Adaptation

 Gaussian mixture models (GMMs)
◦ MAP (Gauvain 94);  MLLR (Leggetter 95)

 Support vector machines (SVMs)
◦ Boosting-like approach (Matic 93)
◦ Weighted combination of old support vectors and 

adaptation data (Wu 04)

 Multi-layer perceptrons (MLPs)
◦ Shared “internal representation” (Baxter 95, 

Caruana 97, Stadermann 05)
◦ Linear input network (Neto 95) 

 Conditional maximum entropy models
◦ Gaussian prior (Chelba 04)
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Adaptation: training/test is different

 Two related yet different distributions
◦ Training
◦ target (test-time)

 Given 
◦ An unadapted model
◦ Adaptation data (labeled)

 Goal
◦ Learn an adapted model that is as close as possible to our 

desired model

 Notes
◦ Assume sufficient training data but limited adaptation data
◦ Training data is not preserved
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Why Is Regularization Helpful?

 Learning theory says

◦ Frequentist: Vapnik’s VC bound expresses Φ as a 
function of the VC dimension of F

◦ Bayesian: the Occam’s Razor bound expresses Φ as a 
function of the prior probability of f

 “Accuracy-regularization”
◦ We want to minimize the empirical error as well as 

the capacity or complexity term.
◦ Frequentist: support vector machines, MLPs with 

weight decay
◦ Bayesian: Bayesian model selection, Gaussian Prior.
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Occam’s Razor Bound for 
Adaptation
 For a countable function space
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m

Bound using 
standard prior

Bounds using 
divergence prior

for different values
of KL

( )f ( ( , | ) || ( , | ))trD p x y f p x y f
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Discriminative Models

 A unified view of SVMs, MLPs, CRFs and etc.

◦ Affine classifiers in a transformed space f = ( w, b)

◦ Classification

◦ Conditional likelihood (for binary case)

sgn( ( ) )Tw x b

Φ(x) Loss function

SVMs Determined by the kernel Hinge loss

MLPs Hidden neurons Log loss

CRFs Any feature function Log loss
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Discriminative Models (cont.)

 Conditional models  p( y | x, f )

◦ Classification

◦ Posterior

◦ Assume f tr and f ad are the true models 
generating the training and target conditional
distributions respectively, i.e.

arg max[log ( , | )]
y

p x y f
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Fidelity Prior for Conditional Models

 Again a divergence

where  β > 0

◦ What if we do not know ptr(x, y)

◦ We seek an upper bound on the KL-divergence 
and hence a lower bound on the prior 

 Key result

where
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VJ Vowel Dataset

 Task 

◦ 8 Vowel classes 

◦ Frame-level classification error rate

◦ Speaker adaptation

 Data allocation

◦ Training set – 21 speakers, 420K samples

For SVM, we random selected 80K samples for training

◦ Test set – 10 speakers, 200 samples

◦ Dev set – 4 speakers, 80 samples

 Features

◦ 182 dimensions – 7 frames of MFCC+delta features
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Neural Network Adaptation 
Procedures
 Unadapted

 Retrained

◦ Start from randomly initialized weight and train with weight decay

 Linear input network (Neto 95)

◦ Add a linear transformation in the input space

 Retrained speaker-independent (Neto 95)

◦ Start from the unadapted; train both layers

 Retrained last layer (Baxter 95, Caruana 97, Stadermann 05)

◦ Start from the unadapted; only train the last layer

 Retrained first layer (proposed here)

◦ Start from the unadapted; only train the first layer

 Regularized

◦ Note that all above (except retrained) can be considered as special 
cases of regularized
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SVM Adaptation
 RBF kernel (std=10) optimized for training and fixed for adaptation

 Mean and std. dev over 10 speakers; red are significant at p<0.001 level

# adapt. samples 

per speaker
1K 2K 3K 

Unadapted 38.21 4.68 38.21 4.68 38.21 4.68

Retrained 24.70 2.47 18.94 1.52 14.00 1.40

Boosted 29.66 4.60 26.54 2.49 28.85 2.03

Bootstrapped 26.16 5.07 19.24 1.32 14.41 1.26

Regularized 23.28 4.21 19.01 1.30 15.00 1.41

Ext. regularized 28.55 4.99 25.38 2.49 20.36 2.08
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MLP Adaptation (I)
 50 hidden nodes

 Mean and std. dev over 10 speakers

# adapt. samples 

per speaker
1K 2K 3K 

Unadapted 32.03 3.76 32.03 3.76 32.03 3.76

Retrained (reg.) 14.21 2.50 10.06 3.15 9.09 3.92

Linear input 13.52 2.22 11.81 2.33 11.96 1.77

Retrained SI 12.15 2.70 9.64 2.74 7.88 2.49

Retrained last 15.45 2.75 13.32 2.46 11.40 2.37

Retrained first 11.56 2.09 9.12 3.08 7.35 2.26

Regularized 11.56 2.09 8.16 2.60 7.30 2.40

Jeff Bilmes - Adaptation



19

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

Num. vowel classes used for adaptation

E
rr

o
r 

ra
te

 o
n

 a
ll 

v
o

w
e

l 
c
la

s
s
e

s

Linear input net

Retrained SI

Retrained last

Retrain first

Regularized

MLP Adaptation (II)

 Varying number of vowel classes available in adaptation data
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