Adaptation

 Ω

Jeff A. Bilmes

bilmes@ee.washington.edu

http://ssli.ee.washington.edu/~bilmes

Department of Electrical Engineering University of Washington, Seattle

Adaptation, joint work with:

• Xiao Li

◦ Former student at University of Washington, now at Microsoft Research

Adaptation

- Many forms of adaptation: MLLR and its variants, MAP adaptation, hybrids, eigenspace, language model adaptation, etc.
- Adaptation has been and will continue to be crucial to obtaining best ASR performance.
- Adaptation is an idea useful not only to speech recognition, but little attention given to why it works so well.

Traditional Pattern Classification

Vapnik gave us empirical risk minimization.

- Gave us a theory that we can use to predict, for a given distribution, how many training samples m to we need in order to help predict how poorly we will do.
- He gave us that some form of regularization is almost always necessary (unless we have lots of training data).
- ... but this theory assumes that the training and (future) test distributions are identical.

Standard Inductive Learning

Given

• a set of *m* samples $(x_i, y_i) \sim p(x, y)$ a decision function space $F: X \rightarrow \{-1\}$

Goal

Example 1 learn a decision function $f \in F$ that minimizes the *expected error*

$$
R_{p(x,y)}(f) = E_{(x,y)\sim p(x,y)}[I(f(x) \neq y)]
$$

• In practice

◦ minimize the *empirical error*

$$
R_{\text{emp}}(f) = \frac{1}{m} \sum_{i=1}^{m} I(f(x_i) \neq y_i)
$$

◦ while applying certain *regularization* strategy to achieve good generalization performance

Why Is Regularization Helpful?

Learning theory says

 $Pr\{ R(f) \le R_{\text{emp}}(f) + \Phi(F, f, m, \delta) \} \ge 1 - \delta$

- Frequentist: *Vapnik's VC bound* expresses Φ as a function of the VC dimension of *F*
- Bayesian: the *Occam's Razor bound* expresses Φ as a function of the prior probability of *f*
- "Accuracy-regularization"
	- We want to minimize the empirical error as well as the capacity or complexity term.
	- Frequentist: support vector machines, MLPs with weight decay
	- Bayesian: Bayesian model selection, Gaussian Prior.

Practical Work on Adaptation

- Gaussian mixture models (GMMs)
	- MAP (*Gauvain 94*); MLLR (*Leggetter 95*)
- Support vector machines (SVMs)
	- Boosting-like approach (*Matic 93*)
	- Weighted combination of old support vectors and adaptation data (*Wu* 04)
- Multi-layer perceptrons (MLPs)
	- Shared "internal representation" (*Baxter 95*, *Caruana 97*, *Stadermann 05*)
	- Linear input network (*Neto 95*)
- Conditional maximum entropy models
	- Gaussian prior (*Chelba 04*)

Adaptation: training/test is different

Two related yet different distributions

- \bullet Training $p^{tr}(x, y)$
- Training $p^{tr}(x, y)$
• target (test-time) $p^{ad}(x, y)$

• Given

- An unadapted model $\argmin_{f \in F} R_{p^r(x,y)}(f)$ *tr* $\sum_{f \in F}$ *f* $\sum_{f \in F}$ $\sum_{f \in F}$ $f^{tr} = \arg \min R_{p^{tr}(x, y)}(f)$
- Adaptation data (labeled) $D_{m}^{\{f \in F\}} = \{ (x_{i}, y_{i}) \sim p^{ad}(x, y) \}_{i=1}^{m}$

Goal

◦ Learn an adapted model that is as close as possible to our desired model $\argmin_{f \in F} R_{p^{ad}(x, y)}(f)$ *ad* $p^{ad}(x,y)$ *f F* $f^{ad} = \arg \min R_{p^{ad}(x, y)}(f)$

• Notes

- Assume sufficient training data but limited adaptation data
- Training data is not preserved

Why Is Regularization Helpful?

Learning theory says

 $Pr\{ R(f) \le R_{\text{emp}}(f) + \Phi(F, f, m, \delta) \} \ge 1 - \delta$

- Frequentist: *Vapnik's VC bound* expresses Φ as a function of the VC dimension of *F*
- Bayesian: the *Occam's Razor bound* expresses Φ as a function of the prior probability of *f*
- "Accuracy-regularization"
	- We want to minimize the empirical error as well as the capacity or complexity term.
	- Frequentist: support vector machines, MLPs with weight decay
	- Bayesian: Bayesian model selection, Gaussian Prior.

Occam's Razor Bound for Adaptation

For a *countable* function space

Pr_o
$$
\left\{ R(f) \le R_{\text{emp}}(f) + \sqrt{\frac{-\ln p_{\text{fid}}(f) - \ln \delta}{2m}} \right\} \ge 1 - \delta
$$

$$
\sqrt{\frac{D(p(x, y | f'') \parallel p(x, y | f)) - \beta - \ln \pi(f) - \ln \delta}{2m}}
$$

Discriminative Models

- A unified view of SVMs, MLPs, CRFs and etc.
	- \circ Affine classifiers in a transformed space $f = (w, b)$
	- \circ Classification $sgn(w^T\phi(x)+b)$

◦ Conditional likelihood (for binary case)

Discriminative Models (cont.)

- Conditional models *p*(*y | x, f*)
	- \circ Classification argmax [log $p(x, y | f)$]
	- **Classification** arg max[log *p*(*x*, *y* | *f*)]

	Posterior $p(f | x, y) = \frac{p(y | x, f)π(f)}{\sum_{x} p(y | x, f)π(f)}$ *y* $\frac{y_1 x, y_2 y_3(x_1)}{(y_1, f) \pi(f)}$ *p* $p(f | x, y) = \frac{p(y | x, f) \pi(f)}{\sum p(y | x, f) \pi(f)}$ $\frac{(y|x, y)x(y)}{p(y|x, f)\pi(f)}$
	- Assume *f tr* and *f ad* are the *true* models generating the training and target *conditional distributions* respectively, *i.e.*

 $p(y | x, f^{\prime r}) = p^{\prime r}(y | x)$ $p(y | x, f^{ad}) = p^{ad}(y | x)$

Fidelity Prior for Conditional Models

Again a divergence

where $\beta > 0$ $\ln p_{\text{fid}}(f) = -D(p(y | x, f'')) || p(y | x, f)) + \ln \pi(f) + \beta$

- \circ What if we do not know $p^{tr}(x, y)$
- We seek an upper bound on the KL-divergence and hence a lower bound on the prior
- Key result

D($p(y | x, f^{tr}) || p(y | x, f)) \le R || w - w^{tr} || + | b - b^{tr} ||$
 are $R = E[||x||]$

where

- Task
	- 8 Vowel classes
	- <p>• 8 Vowel classes</p>\n<p>• <i>Frame-level</i> classification error $r = \frac{m}{\frac{m}{2}}$ <i>Mid</i></p>\n<p>• Speaker adaptation</p>
	- Speaker adaptation
- Data allocation
	- Training set 21 speakers, 420K samples
		- For SVM, we random selected 80K samples for training
	- Test set 10 speakers, 200 samples
	- Dev set 4 speakers, 80 samples
- Features
	- 182 dimensions 7 frames of MFCC+delta features

Neural Network Adaptation Procedures

- **Unadapted**
- **Retrained**
	- Start from randomly initialized weight and train *with weight decay*
- **Linear input network** (*Neto 95*)
	- Add a linear transformation in the input space
- **Retrained speaker-independent** (*Neto 95*)
	- Start from the unadapted; train both layers
- **Retrained last layer** (*Baxter 95*, *Caruana 97*, *Stadermann 05)*
	- Start from the unadapted; only train the last layer
- **Retrained first layer** (*proposed here*)
	- Start from the unadapted; only train the first layer
- **•** Regularized
	- Note that all above (except retrained) can be considered as special cases of regularized

SVM Adaptation

 RBF kernel (std=10) optimized for training and fixed for adaptation • Mean and std. dev over 10 speakers; red are significant at p<0.001 level

MLP Adaptation (I)

- 50 hidden nodes
- Mean and std. dev over 10 speakers

MLP Adaptation (II)

Varying number of vowel classes available in adaptation data

