Instantaneous Adaptation: Integrated Recognition and Adaptation

Mark Gales

11 December 2007

Cambridge University Engineering Department

ASRU Statistical Modelling Panel 2007

- Large mismatch between Research conditions and Industry desires
 - robustness is a fundamental problem
- Adaptation attempts to address this can be run at many levels
 - task/speaker/environment adaptation extends the region of overlap

Ideal Acoustic Model Adaptation

- What we would like adaptation to be be:
 - rapid: adaptation starts with little data global: allow all model parameters to be adapted (not necessarily observed)
 - reliable: the adapted models are "close" to target domain/conditions
 - robust: for unsupervised cases adaptation is robust to hypothesis errors
- For some situations, such as environment mismatch function possible:

$$o_t = h * s_t + n_t$$

but harder for many applications

assume linear/simple interpolation
e.g. speaker adaptation using MLLR (Leggetter & Woodland 1995)

Unsupervised Acoustic Model Adaptation

• Standard approach to unsupervised adaptation:

- 1. initial recognition of adaptation
- 2. estimate transform given hypotheses/lattices
- 3. iterate over loop as time/computation allows
- Distinct two stage approach:
 - early decision made about hypothesis/lattices
 - issues with using adaptively trained models
- Preferable to delay all decisions as late as possible (as in rest of system)

Integrated Adaptation

• Integrate the adaptation process into the acoustic model: DBN becomes

- Treat the adaptation transform as a latent variables
 - Adaptive HMM (Yu& Gales 2007): $p(\boldsymbol{o}_t|q_t, \boldsymbol{W}_t) = \mathcal{N}\left(\boldsymbol{o}_t; \boldsymbol{W}_t \mid \boldsymbol{\mu} \mid \boldsymbol{\Sigma}\right)$
- Same form of DBN as Switching LDS, different interaction of latent variables.

Adaptive HMMs

- "Adaptation" starts instantly, adaptation/recognition integrated
 - simplify so that $\mathbf{W}_{t+1} = \mathbf{W}_t$ speaker/environment blocks

$$p(\mathbf{O}_{1:T}) = \int \sum_{\mathbf{Q}} \prod_{t=1}^{T} P(q_t | q_{t-1}) p(\mathbf{o}_t | q_t, \mathbf{W}) p(\mathbf{W}) d\mathbf{W}$$

- Viterbi/BW cannot be used (conditional independence assumptions broken)
- Variational Bayes EM (Beal 2003): lower-bound approximation relates to
 - N-best supervision schemes (Matsui & Furui 1998)
 - MAP Linear Regression (Chou 1999, Chesta et al 1999)
 - iterative MLLR (Woodland et al 1996)
 - Speaker Adaptive Training (Anastasakos et al 1996, Gales 1998)
- Adaptively trained models can be used directly

Comments

- Theoretically interesting and yields gains
 - elegant framework for adaptive training/decoding
 - distribution over transforms used robust to limited data
 - no issues with errors in the supervision hypotheses
 - but too slow improved/faster approximations required
- In practice many factors need to be simultaneously addressed
 - how to simultaneously address speaker/environment/task changes
 - simply using linear transforms too depressing ...
- Life's not linear
 - moving beyond linear transforms for speaker/tasks etc.

