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Speech Recognition & Speaker Recognition

Q Opposing goals:
Invariance to speaker differences (ASR)
Invariance to what was said (speaker recognition)

Q (Largely) separate research communities

aQ ASR (and ASU) have always relied on speaker
modeling
Speech/nonspeech segmentation
Diarization / speaker tracking
To help in feature normalization & model adaptation

A What can ASR do for speaker modeling ?
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ASR & Speaker Recognition (2)

d Recent years have seen increasing ASR use
in state-of-the-art speaker recognition
- NIST speaker recognition evaluation
- Telephone data (mostly)
- Long (conversation-length) data samples

A Goal here:
- Overview of what's been done
- Incite interest among ASR researchers
- Point out challenges
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“Generative” Speaker Verification
ad GMM-UBM (Reynolds et al.)

d Models cepstral features
Feature normalization / mapping

Q Training:
Train “background model” on a large population

“Speaker model” obtained via MAP-adaptation to
enroliment data

a Testing:

Log-likelihood ratio between speaker and background
model

Threshold for decision (accept / reject)
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“Discriminative” Speaker Verification
Q Mostly based on SVMs (Campbell et al.)

A

d Each conversation side = one point in
feature space

Q SVM trained to separate target from
background samples

Q Score = distance from test sample to + Target training sample(s)

decision hyperplane + Background samples
_ _ + Test sample
A Linear kernel functions work well for

most features tried to date

A Crucial step: how to map variable-length
speech sample into fixed-length vector
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How Can ASR Help?

d Phonetic / text conditioning

d Modeling “speaking style”
- Pronunciation
- Lexico-grammatical choice
- Prosodic patterns

O ASR “by-product” features
- MLLR-SVM features

d Challenges
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Phonetic Conditioning

Q Condition cepstral features on phone or word
identities

d Removes within-speaker variability due to
phonetic content

- More like text-dependent speaker verification

d Possibly focuses features on regions of
greater inter-speaker variability

- E.g., discourse markers

a Explored by MIT-LL, Dragon, ICSI, et al.
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Speaking Style Modeling

a Pronunciation modeling (many variants)
- Phone N-gram frequency SVM vectors (Campbell)
- Greatly enhanced by lattice decoding (Hatch et al.)

d Lexical & grammatical choice (Doddington)
- Word N-gram frequency vectors

- Distinguish “slow” from “fast” pronunciations for
frequent words (Tur et al.)

d Prosodic modeling (Adami, Shriberg et al.)
- Syllable-based energy, duation, and pitch features
- Enhanced by lexical constraints
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Prosodic Speaker Modeling

O SNERFs: Syllable-level Non-Uniform Extraction Region Features

ad Compute a set of (140) duration, pitch and energy features on
each syllable

a Transformations to fixed-length vectors using Fisher score
(Ferrer et al.)
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Recognizer-internal Features

A ldea: speech recognizer by-products encode
speaker-specific information

- Results of recognizer modeling inter-speaker
variability

d Examples:

- Sub-word unit duration modeling (Ferrer et al.,
Eurospeech '03)

- Speaker adaptation (MLLR) transforms
(Eurospeech ‘05, IEEE Trans. ASLP '07)
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MLLR Speaker Adaptation

Q Speech recognizer adapts speaker-independent
model to best fit test speaker

Speaker MLLR Transform Speaker
< indep < | > dependen
models models

Q Adaptation transform estimated by Maximum
Likelihood Linear Regression (MLLR)

Maximizes likelihood of test data under recognition
hypothesis

A Transform rotates and shifts Gaussian means (=
matrix + vector)
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MLLR-SVM Speaker Recognition

A Idea: MLLR transform encapsulates what makes
target speaker different from the “average speaker”

d Transforms are based on detailed, sequential
speech models (unlike std. cepstral speaker models)

a Use transform coefficients as feature vector (after
suitable normalization)

H s
ad Refinements:

Combine transforms for different phone classes
Combine transforms relative to different recognition models

d Model feature vectors with support vector machines
(SVMs)
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Results (on NIST SRE’06)

System %EER
Cepstral GMM 4.75
Cepstral Polynomial SVM 5.07
Gaussian Supervector SVM 4.15
MLLR SVM 4.00

¢ | State/word duration GMM 16.03 /22.24

<§ Word + duration N-gram SVM 23.46
Prosodic SVM 10.41
Combination 2.59

Q Note: MLLR and prosodic SVM best 2-system combination
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Challenges

A Novel recognizer-based features
Non-linear adaptation transforms ?

d Need fast, accurate ASR for variable, “unexpected”
conditions
Noisy environments
Variable channels
Nonnative speakers

A Mapping of ASR-based features across languages

ad How to compare English to non-English ASR
features (bilingual speakers) ?
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