Challenges and Future Directions for Speech-to-Speech Translation

Rohit Prasad, Prem Natarajan, David Stallard, Fred Choi, Shirin Saleem, Chia-lin Kao, Krishna Subramanian, Kriste Krstovski BBN Technologies, Cambridge, MA, USA

IEEE ASRU 2007 Panel "Problems and Future Directions of Speech Translation Technology"

BBN TransTalk[™]: Transcending the Language Barrier

- Enable free form two-way spoken communication across a language barrier
- BBN TransTalk integrates the following components:
 - BBN Byblos speaker-independent, n-gram automatic speech recognition (ASR) engine
 - BBN's phrase-based statistical machine translation (MT) coupled with a "Question Canonicalizer"
 - Cepstral's Text-to-Speech engine
- Focus on English/Iraqi for force protection domain
 - Other languages: Farsi, Levantine, and Indonesian
- Being advanced under the DARPA TRANSTAC program
 - Participants: BBN, CMU, IBM, SRI, USC

BBN TransTalk for Multiple Platforms

Laptop System

Wearable Headset System

IEEE ASRU 2007 Panel "Problems and Future Directions of Speech Translation Technology"

Challenges for Speech-to-Speech (S2S) Translation

- Algorithmic: Robust to changes in speakers, environment, and topics of the conversation
- Dialog Management: Prevent dialog from going off track when the system or the user makes errors
- Evaluation Metric: Devise a metric for measuring improvements and optimizing *end-to-end* performance
- Hardware: Portable, low power, rugged, affordable, etc.
- User Interface: Simple but effective eyes-free and handsfree application control

Key Question: What are severe errors made by our current S2S system?

Text-to-Text (T2T) Error Analysis for Iraqi to English (I2E)

 Developed a novel methodology for assigning severity to an error category based on relative reduction in Likert Score it causes¹

Category	Count	Severity	%Total Damage
Wrong Concept	51	1.72	21.8
Word Sense	57	1.42	20.2
Missing Concept	43	1.65	17.6
Pronoun Error	63	0.85	13.4
Missing Non-Concept	34	0.82	6.9
Word Order	30	0.76	5.7
Polarity	8	1.99	4.0
Disfluency	7	1.43	2.5
Inserted Non-Concept	16	0.56	2.4

- Most damaging: Wrong Concept, Word Sense, Missing Concept
- Polarity has highest weight, but causes small damage
- Pronoun Error is the most common

¹D. Stallard, et al., "Recent Improvements and Performance Analysis of ASR and MT in a Speech-to-Speech Translation System," To Appear ICASSP 2008.

Category	Count	Severity	%Total Damage
Word Sense	39	1.56	21.9
Wrong Concept	33	1.90	21.7
Pronoun Error	59	0.94	19.6
Missing Concept	24	1.82	15.4
Missing Non-Concept	24	1.07	9.0
Word Order	20	0.58	4.1
Singular vs. Plural	13	0.70	3.2
Affix	8	0.99	2.8

- The damaging errors are the intuitively "major" ones
- Pronoun Error is again the most common
- Intuitively more "minor" errors are the least damaging

Speech-to-Text (S2T) Error Dominated by ASR Error– E2I

Total Fractional Likert Error for Each Category on July 07 Offline Iraqi Set

S2T Error Dominated by ASR Error – I2E

Total Fractional Likert Error for Each Category on July 07 Offline Iraqi Set

Future Directions for Algorithmic Improvements

- Improve robustness to ASR errors
 - Tighter coupling of ASR and MT beyond feed-forward 1-best integration
 - Noise-robust acoustic modeling
 - Improve adaptation to speaker, environment, topics
- Incorporate context-awareness in ASR and MT
 - Need to use context at multiple levels (utterance, dialog, etc.)
 - Major error categories such as Word Sense, Wrong Concept, and Pronoun Errors can be mitigated with use of context
- Develop a methodology for optimizing end-to-end system performance

