

keyword search in audio

lattice-based in audio search

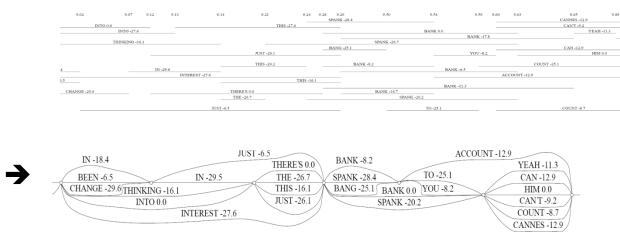
- use of lattices: +36% [Saraclar & Sproat, HLT/NAACL 2004]
- indexing using transducers [Allauzen et al., HLT/NAACL 2004]
- position-specific posterior lattices [Chelba & Acero, ACM 2005]
- word/phonetic hybrid lattices [Yu & Seide, InterSpeech 2004]

lattice indexing benefits

- alternative recognition candidates
- confidence scores
- (time information

- → recall++
- ➔ precision++
- → user experience)

"into this bank account" 🍕


9.02	9.07	9.12	9.13	9.14	9.21	9.24	9.28	9.29	9.50	9.54	9.59	9.60	9.63	9.65	9.89
						_		SPANK -28.4						CANNES -12.9	
INTO	0.0				THIS -2	7.6								CANT -9.2	
	INTO -27.6						_			BANK 0.0				YE	AH -11.3
											BANK -17	.8			_
	THINKING -16	.1							SPANK -26.7						
							_	BANG -25.1						CAN -12.9	
					JUST -26.1						YOU -8.2			H	HM 0.0
					THIS -20.2		_	BA	NK -8.2					COUNT -25.1	
		IN -	29.6							BANK	6.5				
			INTEREST -27.6									A	CCOUNT -12	.9	
5						THIS -	16.1								
							_			BANK	-11.3				
CHANGE -29.6				THERE'S	0.0				BANK -14.7						
				THE -26.	.7	_			SPAN	VK -20.2					
				JUST -6.5						TO -25.1				COUNT -8.7	

				single-word			Х	AND		
	phrase queries			queries			queries			
	FOM	mAP	R75	FOM	mAP	R50	FOM	mAP	R75	index size
STT transcript with confidence	40.6	42.7	43.4	36.4	44.2	45.2	42.8	26.1	26.1	1
raw lattice	66.1	67.2	55.7	49.0	55.9	45.4	55.6	63.3	61.6	1617
TMI	68.4	69.6	58.0	48.7	55.9	45.4	56.1	66.3	63.9	46.2
TMI with pruning	65.7	67.1	58.3	48.2	55.4	45.4	55.0	60.4	61.0	9.9
relative improvement over STT		57%	34%	32%	25%	1%	30%	×2.3	×2.3	-

lattice indexing useful for:

- user-adjustable confidence threshold / FOM metric
- known-item search: high recall
- ad-hoc search: high precision \rightarrow benefit from AND & phrase queries

- size reduction: cluster similar word hypotheses (posterior representation)
- e.g. TMI [Yu et al. HLT'06, Seide et al. ASRU'07]
 - allow some boundary inaccuracies: < 1 word (no skip/loop back)
 - group consecutive nodes unless loop is created
 - − dynamic programming → minimize #
 - only few extra bits required compared to text indexing

→ straight-forward to build inverted index (similar to text)

Let's index the Internet! Microsoft's video properties on

... and put it where it belongs: the TV.

killer scenario!

• Audio indexing of Internet video → a killer scenario! ...?

27.2%	adult	19.6%	music	8.7%	category	6.9%	celebrities
18.2	s	2.2	rihan[n]a	1.8	trailer	1.7	britney [spears]
3.3	p	1.7	spice girls	1.4	cat[s]	1.3	avril [lavigne]
0.7	g	1.0	beyonce	1.0	funny	1.1	shakira
0.8	girl[s]	0.6	linkin park	0.6	music	0.9	paris hilton
0.5	bikini	0.6	celine dion	0.6	featured	0.5	madonna
2.9%	TV	1.8%	news	1.5%	movies	0.4%	sports
0.7	criss angel	0.5	obama	0.6	high school musical [2]	0.2	football
0.4	to catch a predator	0.5	erin burnett	0.3	tweeling	0.2	soccer
0.3	soprano	0.4	dateline	0.2	harry potter		
0.3	heroes	0.2	panda	0.2	predator		
0.2	lost in space	0.2	ron paul	0.2	beowulf		

Source: MSN Video

killer scenario?

- Audio indexing of Internet video → a killer scenario?
 - cost of STT
 - captions; manual transcription relatively cheap; (\$90-\$200/h)
 commercial content: incentive to make content discoverable (producer-side)
 - mostly entertainment; users don't know what they want; social aspect (recommendation)
- useful scenarios: information focus; low production value; text is no alternative; confidentiality
 - podcasts, focus groups, customer communication / feedback
 - lectures, just-in-time learning, internal talks
 - meetings, phone calls, interviews
 - voicemail, audio notes
 - → highly varied; ad-hoc recordings; low learning curve; little support
- learning:

no single one killer app; instead a "long tail" of applications

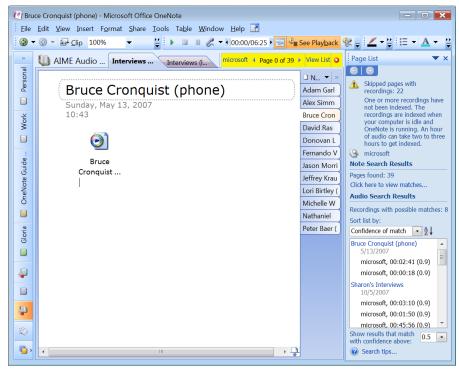
→ technology **platform**, audio being **one** feature

platform challenges

- 1 easy to deploy, integrate with what's there
- 2 domain independence
- 3 suitable for non-technical users

platform challenge #1: integration with what's there

- desire to re-use investments in text indexers
- lattices cannot be indexed with text indexers (no word-position concept)


- sausages: infeasible due to ϵ edges
- solution: [Seide et al, ASRU'07]
 - align and bin *n*-grams to *n* consecutive positions (TALE)
 - no code change inside required
 - only pre/postprocessing
- learning: solve organizational problem with technology...

platform challenge #2: domain independence

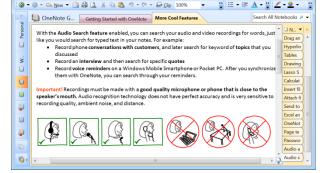
- OOV \rightarrow phonetic approach:
 - phonetic lattices / phonetic search [Seide et el., HLT/NAACL'05]
 - index phonotactically allowable 5 grams, collapse into segments, use as fast match
 - shipping today in Microsoft Office OneNote 2007

platform challenge #2: domain independence

- OOV \rightarrow phonetic approach:
 - phonetic lattices / phonetic search [Seide et el., HLT/NAACL'05]
 - index phonotactically allowable 5 grams, collapse into segments, use as fast match
 - shipping today in Microsoft Office OneNote 2007

<u>setup (iCampus)</u>	FOM:	1.6 h	\rightarrow	16 h	\rightarrow	160 hours	
phonetic search		76%	\rightarrow	68%	\rightarrow	57%	-9% points / 10 x
word lattice search		67%	\rightarrow	65%	\rightarrow	60%	-4-5% points / 10 x
hybrid		84%	\rightarrow	78%	\rightarrow	69%	

- scales poorly in size and precision
- → remaining ASR-related challenge:


OOV lattice indexing that scales w.r.t. size and precision

platform challenge #3: "do it yourself" recognition

🗾 Au	dio search - Microsoft Office OneNote	- • 🗙							
<u> </u>	<u>E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>S</u> hare <u>T</u> ools Ta <u>b</u> le <u>W</u> indow <u>H</u> elp 🛃								
G -	• ③ ▼ 🖴 <u>N</u> ew ▼ 🚔 🖓 👗 🤚 🏝 🥙 ▼ 🤍 ▼ 🚭 Clip 100% 🛛 👻 🚆 🖽 ▼ 🚆 🚣 🗲								
×	U OneNote G Getting Started with OneNote More Cool Features Search All No	otebooks 🔎 👻							
🛄 Personal	With the Audio Search feature enabled, you can search your audio and video recordings for words, just like you would search for typed text in your notes. For example:	Drag an Hyperlin							
	 Record phone conversations with customers, and later search for keyword of topics that you discussed 	Tables							
N.	Record an interview and then search for specific quotes	Drawing							
	 Record voice reminders on a Windows Mobile Smartphone or Pocket PC. After you synchronize them with OneNote, you can search through your reminders. 	Lasso S							
0	them with one Note, you can search through your reminders.	Calculat							
	Important! Recordings must be made with a good quality microphone or phone that is close to the	Insert fil							
	recording quality ambient poise, and distance								
4	recording quality, ambient noise, and distance.	Send to							
		Excel an							
		OneNot Page te							
-		Page te							
		Audio a							
1 00		Audio s							

platform challenge #3: "do it yourself" recognition

- mainstream: audio indexing \rightarrow as easy as text indexing
- "do it yourself" recognition
 - vertical "long tail" apps
 - no research team building the app for you

- specific challenges:
 - ad-hoc recording conditions \rightarrow distant talking (reverberation, noise)
 - vocabulary / language model verticalization \rightarrow use context (keywords, docs, e-mails...)
 - capitalize on user audio → unsupervised adaptation/learning
- ➔ "do it yourself" recognition: conversational ASR in ad-hoc recording conditions for non-technical users

key takeaways

- indexing keywords? \rightarrow use lattices
 - lattices significantly improves accuracy
 - indexing word lattices no major challenge anymore
- the problem: killer scenario?
 - \rightarrow platform / one feature
 - enable "long tail" of customers to build audio-search apps
 - integration with existing infrastructure, text apps, etc.
- what is needed to succeed:
 - large-scale phonetic / vocabulary-independent indexing
 - "do it yourself recognition"
 - → a "killer" research program!