Applications of Submodularity

Jeff A. Bilmes

 Ω

bilmes@ee.washington.edu

http://ssli.ee.washington.edu/~bilmes

Department of Electrical Engineering University of Washington, Seattle

Joint work with:

Mukund Narasimhan

◦ Former student at University of Washington, now at Microsoft Research

Outline

- 1. Submodularity
	- 1. Definition of Submodularity
	- 2. Examples of Submodularity
	- 3. Example of Submodularity in machine learning: bi-partite graph clustering, applied to words to improve language models.

Convexity and Convex Optimization

- Optimization is crucial for most machine learning problems.
- Objective function can vary: score, likelihood, probability. Goal is to find an extremum of this function.
- If the function is convex, any local extremum is a global extremum.
- Convexity allows efficient algorithms to find such an extremum even when the problem might be complex

Convexity and Convex Optimization \bullet Convex Functions: f • Convex Sets Convex Optimization • unconstrained if $\mathcal V$ is everything. \circ Constraints on $\mathcal V$ lead to (LP, QP, SDP). $f(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2)$ $\forall x_1, x_2 \in \mathcal{V}, \forall 0 \leq \lambda \leq 1; \lambda_1 x_1 + \lambda_2 x_2 \in \mathcal{V}$ $\min_{x \in \mathcal{V}} f(x)$ min *cx* s.t. $Ax \leq b$

Convexity and Machine Learning

- Some important and successful ML problems turn out to be convex
	- Support-vector machines
	- Kernel machines
	- One step of EM learning procedure

What about discrete optimization?

• Let γ now be a set of n objects, and $f(\cdot)$ a function that maps from subsets of γ to the reals. We wish to solve the following problem:

$$
S^* = \underset{\varnothing \subset S \subset \mathcal{V}}{\operatorname{argmin}} f(S)
$$

- The problem seems hopelessly intractable because there are $2^{|V|}$ -2 possibilities, so naïve enumeration won't work.
- This however captures many useful problems in speech: word clustering, structure learning, unit selection, language model selection, etc.
- A tractable solution is desirable.

- Submodularity is like a discrete form of convexity
- It formalizes the notion of diminishing returns.
- It characterizes many useful functions, such as entropy, mutual-information, and graph cuts.
- Some new machine learning procedures can arise when considering their potential submodularity.

Submodularity Defined

- Consider function $f: 2^{\mathcal{V}} \to \mathbf{R}$ defined on all subsets of $\mathcal V$
- Note, this is a function well defined on all subsets of some underlying set $\mathcal V$
- Function is said to be submodular if for all subsets $A, B \subseteq \mathcal{V}$, we have $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

 Function is said to be submodular if for all subsets $A, B \subseteq \mathcal{V}$, we have

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

- Submodularity captures the notions of diminishing returns which can serve as its definition:
	- The more you have, something new can have only potentially less value.
-

• For all
$$
A \subseteq B \subset V
$$
 and for $x \in V - B$

$$
\underbrace{f(A \cup \{x\}) - f(A)}_{\text{Gain of adding } x \text{ to } A} \geq \underbrace{f(B \cup \{x\}) - f(B)}_{\text{Gain of adding } x \text{ to } B}
$$

- Which definition to use?
	- 1. $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$
	- 2. ich definition to use?
 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$
 $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$
- The first is more useful mathematically, but the second is more intuitive.

Example of Submodularity

• The set cardinality function is trivially submodular.

$$
\forall A \subseteq \mathcal{V}, f(A) = |A|
$$

• Note that in this case, we always have equality in:

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$

Example of Submodularity

- Given an urn that may contain an unlimited number of single-color balls.
- For a given set A of balls, let $f(A)$ be the number of distinct ball colors in set A
- $f(A)$ will then be a submodular function.
- In the picture,

$$
f(A)=2
$$

Example of Submodularity

• For any $A \subseteq \{1, 2, 3, 4, 5, 6\}$, $f(A)$ is the number of colors in A.

•
$$
f\left(\{1,2,5\}\cup\{6\}\right)-f(\{1,2,5\})=1>0=f\left(\{1,2,3,5\}\cup\{6\}\right)-f(\{1,2,3,5\})
$$

Examples of Submodularity

• $S = \{1, 2, 3, 4, 5, 6\}$ is the columns of a matrix.

$$
\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{array}
$$

• $f(A)$ is the rank of the subspace spanned by A.

$$
\star f(\{1\}) = f(\{2\}) = \cdots = f(\{6\}) = 1
$$

$$
\star f(\{1\} \cup \{4\}) - f(\{1\}) = 1 \ge 0 = f(\{1, 2\} \cup \{4\}) - f(\{1, 2\}).
$$

Graph-cuts are submodular

- $G = (S, E)$ a graph.
- If $A, B \subseteq S$ are disjoint, let $E(A;B)$ be edges adjacent to both A and B.
- Let $f(A) = |E(A; S \setminus A)|$. Then f is symmetric and submodular.

Bi-partite graph-cuts are submodular

- Bi-partite graph has left part V and right part F.
- $G=(V, F, E)$ **Given** $A \subseteq V$ then $f(A)$ is the number of neighbors of *A*
- Example: if $A = \{1, 2, 5\}$ then $f(A) = \{a,b,d,e\}$

Entropy is Submodular

- Let $(X_1, X_2, ..., X_n)$ be a collection of random variables and let $V = \{1, 2, ..., n\}$
- For a given subset $A \subseteq V$ with $A = \{a_1, a_2, ..., a_{|A|}\}$ let $X_A = \{X_{a_1}, X_{a_2}, ..., X_{a_{|A|}}\}$ let $X_A = \{X_{a_1}, X_{a_2},..., X_{a_{|A|}}\}$
- We can define the entropy function as: can define the entropy function a
 $f(A) = H(X_A) = -\sum p(x_A) \log p(x_A)$
	-
- \bullet Then $f(A)$ is a submodular function!
- Intuition: Conditioning reduces uncertainty, uncertainty of a variable decreases as other RVs become known. $(X_1, X_2, ..., X_n)$ be a collection of random
ables and let $\mathcal{V} = \{1, 2, ..., n\}$
a given subset $A \subseteq V$ with $A = \{a_1, a_2, ..., a_{|A|}\}$
 $X_A = \{X_{a_1}, X_{a_2}, ..., X_{a_{|A|}}\}$
can define the entropy function as:
 $f(A) = H(X_A) = -\sum p(x_A) \log p(x_A)$
n

Symmetric Mutual Info. is also Submodular

- Let $(X_1, X_2, ..., X_n)$ be a collection of random variables and let $V = \{1, 2, ..., n\}$
- For a given subset $A \subseteq V$ with $A = \{a_1, a_2, ..., a_{|A|}\}$ let $X_A = \{X_{a_1}, X_{a_2}, ..., X_{a_{|A|}}\}$ let $X_A = \{X_{a_1}, X_{a_2},..., X_{a_{|A|}}\}$ $(X_1, X_2, ..., X_n)$ be a collection of random
ables and let $\mathcal{V} = \{1, 2, ..., n\}$
a given subset $A \subseteq V$ with $A = \{a_1, a_2, ..., a_{|A|}\}$
 $X_A = \{X_{a_1}, X_{a_2}, ..., X_{a_{|A|}}\}$
can define the symmetric mutual
rmation function as:
 $= I(X_A; X_{\mathcal$
- We can define the symmetric mutual information function as:

 $\ddot{}$

information function as:
\n
$$
f(A) = I(X_A; X_{\nu-A}) = \sum_{x_{\nu}} p(x_{\nu}) \log \frac{p(x_A) p(x_{\nu-A})}{p(x_{\nu})}
$$

• Generalizes graph cuts, but cut function is no longer just sum of edge weights.

Submodularity and Convexity

- Both generalize many problems in many fields (machine learning, economics, etc.)
- There is a 1-1 correspondence between certain submodular and certain convex functions (Lovász extension)
- Both are preserved under many transformations (addition, convolution, composition/addition with linear functions, etc.)
- Both exhibit tractable optimization.

Minimizing Submodular Functions

• Let $\mathcal V$ be a set of n objects, and f a function that maps from subsets of ${\mathcal V}$ to the reals.

$$
S^* = \underset{\varnothing \subset S \subset V}{\operatorname{argmin}} f(S)
$$

- Grötschel, Lovász, Schrijver: 1981 first polynomial time algorithm for minimizing submodular functions (via ellipsoid method)
- Iwata, Fleischer, Fujishigi, and Schrijver: 2000, independently discovered first combinatorial polynomial algorithms for submodular function minimization.

Minimizing Submodular Functions

• Let $\mathcal V$ be a set of n objects, and f a function that maps from subsets of $\mathcal V$ to the reals.

$$
S^* = \underset{\varnothing \subset S \subset V}{\operatorname{argmin}} f(S)
$$

 \bullet The function $f(\cdot)$ is symmetric if for $\varnothing \!\subseteq\! S$ \subseteq \mathcal{V} :

$$
f(S) = f(\mathcal{V} - S)
$$

 Queyranne: 1998 – first strongly-polynomial and O(n^3) algorithm for minimizing symmetric submodular functions.

Applications

- Past few years, we've worked on many applications of submodularity
	- Learning graphical models (Narasimhan & Bilmes, 2004).
	- Subgraphical models (Narasimhan & Bilmes, 2005)
	- Submodular-supermodular procedure for discriminative structure (Narasimhan & Bilmes 2005)
	- Q-Clustering (Narasimhan & Jojic & Bilmes, 2005)
	- Balanced Word Clustering (Narasimhan & Bilmes, 2007)
- We here expand on only this last issue, finding balanced clusterings of words.

Bi-partite graph-cuts are submodular

- Bi-partite graph has left part V and right part F.
- $G=(V, F, E)$ **Given** $A \subseteq V$ then $f(A)$ is the number of neighbors of *A*
- Example: if $A = \{1, 2, 5\}$ then $f(A) = \{a,b,d,e\}$

Submodularity & bipartite cuts

• Same bipartite graph $G = (V, F, E)$

 $|c|$

łЫ

- V is a set of "objects", in our case it will be word (or types).
- F is a set of "features" (e.g., could be tags, or any other possible features of the words).
- A node $v \in V$ connected to an $f \in F$ if object v has feature f.
- Goal: Partition V into clusters, to minimize the feature overlap, while keeping clusters balanced.

Bipartite cuts & submodularity

- *V S* \overline{e} *S*
- For S \subseteq V, $\Gamma_c(S)$ is the number of features common to both X and $V - S$.
- $\Gamma_c(\{1,2,5\}) = |\{b,d,e\}|$
- $\Gamma_c(X)$ is symmetric submodular
- We can bi-partition V in polynomial time.

Maintaining Balanced Clusters

 We could minimize the above, but we also want to maintain balance. Let $S_1 \cup S_2 = V$ be a partition of

the objects. Criteria to minimize becomes:
\n
$$
ratioCut(S_1, S_2) = \frac{\Gamma_c(S_1)\Gamma_c(S_2)}{|S_1||S_2|}
$$

- This criteria penalizes small clusters since we divide by the size of each one.
- Minimizing this criteria is unfortunately NPcomplete (Shi & Malik).
- We define an iterative procedure guaranteed to find a form of "local" optima.

Local Split and Swap

• For any biparition $S_1 \cup S_2 = \mathcal{V}$ and $X \subseteq S_1$ let
 $\operatorname{Gain}(X) = \Gamma_c(S_1) - \Gamma_c(S_1 - X)$

$$
Gain(X) = \Gamma_c(S_1) - \Gamma_c(S_1 - X)
$$

$$
AvgGain(X) = \frac{\Gamma_c(S_1) - \Gamma_c(S_1 - X)}{|X|}
$$

 $\text{BestAvgGain} = \max_{\emptyset \subset X \subseteq S_1} \text{AvgGain}(X)$

There exists a good swap

• Theorem (Narayanan 2003): Let (S_1, S_2) be a bipartition of V (so $V = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$) and let $\emptyset \neq U \subset S_1$ be a proper subset of S_1 satisfying

Then $BestAvgGain = AvgGain(U)$

ratioCut($S_1 - U, S_2 \cup U$) < ratioCut(S_1, S_2)

• Therefore, if we find such a U, we can guarantee a local step in the right direction to reduce ratioCut.

Finding a good swap

- But how do we find such a U?
- Theorem (Narayanan 2003). It is the case that $\lambda =$ BestAveGain iff there is a subset $U \subset S_1$ such that

n that
\n
$$
\min_{X \subseteq S_1} \{ \Gamma_c(X) - \lambda |X| \} = \Gamma_c(S_1) - \lambda |S_1|
$$
\n
$$
= \Gamma_c(U) - \lambda |U|
$$

• So we need to be able to solve this minimization problem for all possible values of λ , and when we find it for all λ we that λ = BestAveGain iff there is a subset $U \subset S_1$
such that
 $\min_{X \subseteq S_1} \{ \Gamma_c(X) - \lambda | X | \} = \Gamma_c(S_1) - \lambda | S_1|$
 $= \Gamma_c(U) - \lambda | U|$
So we need to be able to solve this
minimization problem for all possible
values of λ , and whe

Finding a good swap

• How do we find the solution to the following 1 $\min_{X \subseteq S_1} \{ \Gamma_c(X) - \lambda | X | \}$ $(X) - \lambda | X$ $\widetilde{\subseteq}$ $\Gamma_c(X) - \lambda$

for all values λ ?

• Turns out there are no more than |V| distinct solutions, with |V| distinct values of λ and they can all be found simultaneously by an amazing algorithm by Tarjan (parametric flow) in O(|V|²|E}) time.

Partition sub-splitting & swap

 Represent as a flow, and use Tarjan's parametric max-flow (min-cut) algorithm (finds solutions for all λ).

Iterative Algorithm To Improve RatioCut

- 1. Start with an arbitrary bi-partition
- 2. Compute a local move (O(|V|²|E|)) using parametric max-flow procedure.
- 3. Try all |V| possible improvements, and take the one that is best.
- 4. If an improvement was found, go to 1, otherwise stop.
- This gives a bi-partition: We partition the partitions to refine the clustering (top-down procedure) as needed.

Application: word clustering in language models

"He ate, he drank, and he slept."

- Words on the left, their features on the right.
- The "features" of a word can be the words that occur to the right of it in a text corpus.
- Optimal for bi-gram LM, approximate for a tri-gram LM.

- Clusters are used in a factored language model with generalized backoff (Bilmes & Kirchhoff, HLT03), (Kirchhoff'2004).
- In a bi-gram, we first backoff to the cluster of the previous word as in:

$$
p(w_t | w_{t-1}, c(w_{t-1}))
$$

where c(w) is the clustering of the previous word. $\begin{split} &p\big(\mathcal{W}_{t} \bigm| \mathcal{W}_{t-1}, \mathcal{C}\big(\mathcal{W}_{t-1}\big)\big) \ &\text{here c(w) is the clustering of the} \ &\text{vious word.} \ &\text{Jeff Bilmes-Applications of Submodularity} \hspace{1cm} \text{Page 36} \end{split}$

Language model perplexity results.

- 497 clusters on Wall Street Journal (WSJ) data from the Penn Treebank 2 tagged (88-89) WSJ collection. Factored language models using Kneser-Ney smoothing, all done using Stolcke's SRILM.
- Results for both bi-gram (for which algorithm is optimal) and tri-gram (for which algorithm is only an approximation).

Language model PPL results

- Why do we care about bigrams?
- If we can obtain good PPL results with a bigram, that can be used in a multi-pass ASR system to generate $1st$ pass lattices, but it a bigram still has small state space.

Language model PPL results

 Comparing results to manually-generated (cheating) POS tags, which potentially can look into the future (which is why it is cheating).

Conclusion

- 1. Submodularity is a powerful concept
- 2. Like convexity, it is sometimes possible to define tractable algorithms but in this case over discrete sets.
- 3. The polynomiality of submodular optimization pushes the boundary of the set of discrete problems that can be solved exactly.

The end