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Convexity and Convex Optimization

 Optimization is crucial for most machine 
learning problems.

 Objective function can vary: score, 
likelihood, probability. Goal is to find an 
extremum of this function.

 If the function is convex, any local 
extremum is a global extremum.

 Convexity allows efficient algorithms to 
find such an extremum even when the 
problem might be complex
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Convexity and Convex Optimization

 Convex Functions: 

 Convex Sets

 Convex Optimization

◦ unconstrained if     is everything.

◦ Constraints on     lead to (LP, QP, SDP).
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Convexity and Machine Learning

 Some important and successful ML 
problems turn out to be convex

◦ Support-vector machines

◦ Kernel machines

◦ One step of EM learning procedure
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What about discrete optimization?

 Let       now be a set of n objects, and           a 
function that maps from subsets of      to the 
reals. We wish to solve the following problem:

 The problem seems hopelessly intractable 
because there are 2|V|-2 possibilities, so naïve 
enumeration won’t work.

 This however captures many useful problems in 
speech: word clustering, structure learning, unit 
selection, language model selection, etc.

 A tractable solution is desirable.
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Submodularity

 Submodularity is like a discrete form of 
convexity

 It formalizes the notion of diminishing 
returns.

 It characterizes many useful functions, such 
as entropy, mutual-information, and graph 
cuts.

 Some new machine learning procedures 
can arise when considering their potential 
submodularity.

Jeff Bilmes - Applications of Submodularity Page 8



Submodularity Defined
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 Consider function                       defined on 
all subsets of

 Note, this is a function well defined on all 
subsets of some underlying set 

 Function is said to be submodular if for all 
subsets                  , we have
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Submodularity
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 Function is said to be submodular if for all 
subsets                  , we have,A B 
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Submodularity
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 Submodularity captures the notions of 
diminishing returns which can serve as its 
definition:

◦ The more you have, something new can have 
only potentially less value.

 For all                      and for  

Gain of adding  to Gain of adding  to 
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Submodularity
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 Which definition to use?

1.

2.

 The first is more useful mathematically, 
but the second is more intuitive.

( ) ( ) ( ) ( )f A f B f A B f A B    

( { }) ( ) ( { }) ( )f A x f A f B x f B    



Example of Submodularity

 The set cardinality function is trivially 
submodular.

 Note that in this case, we always have 
equality in:
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Example of Submodularity

 Given an urn that may contain an 
unlimited number of single-color balls.

 For a given set     of balls, let           be the 
number of distinct ball colors in set 

 will then be a submodular 
function.

 In the picture,
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Example of Submodularity
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Examples of Submodularity
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Graph-cuts are submodular
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Bi-partite graph-cuts are submodular
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 Bi-partite graph has 
left part V and right 
part F.



 Given             then       
is the number of 
neighbors of

 Example: if

then        
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Entropy is Submodular
 Let                         be a collection of random 

variables and let

 For a given subset             with                      
let 

 We can define the entropy function as:

 Then           is a submodular function!

 Intuition: Conditioning reduces 
uncertainty, uncertainty of a variable 
decreases as other RVs become known.
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Symmetric Mutual Info. is also Submodular

 Let                         be a collection of random 
variables and let

 For a given subset             with                      
let 

 We can define the symmetric mutual 
information function as:

 Generalizes graph cuts, but cut function is 
no longer just sum of edge weights.
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Submodularity and Convexity

 Both generalize many problems in many 
fields (machine learning, economics, etc.)

 There is a 1-1 correspondence between 
certain submodular and certain convex 
functions (Lovász extension)

 Both are preserved under many 
transformations (addition, convolution, 
composition/addition with linear 
functions, etc.)

 Both exhibit tractable optimization.
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Minimizing Submodular Functions
 Let       be a set of n objects, and f a function 

that maps from subsets of      to the reals.

 Grötschel, Lovász, Schrijver: 1981 – first 
polynomial time algorithm for minimizing 
submodular functions (via ellipsoid method)

 Iwata, Fleischer, Fujishigi, and Schrijver: 2000, 
independently discovered first combinatorial 
polynomial algorithms for submodular function 
minimization.
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Minimizing Submodular Functions
 Let       be a set of n objects, and f a function that 

maps from subsets of      to the reals.

 The function           is symmetric if for                    :

 Queyranne: 1998 – first strongly-polynomial and 
O(n^3) algorithm for minimizing symmetric 
submodular functions.
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Applications
 Past few years, we’ve worked on many 

applications of submodularity
◦ Learning graphical models (Narasimhan & Bilmes, 

2004).

◦ Subgraphical models (Narasimhan & Bilmes, 2005)

◦ Submodular-supermodular procedure for 
discriminative structure (Narasimhan & Bilmes 2005)

◦ Q-Clustering (Narasimhan & Jojic & Bilmes, 2005)

◦ Balanced Word Clustering (Narasimhan & Bilmes, 
2007)

 We here expand on only this last issue, 
finding balanced clusterings of words.
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Bi-partite graph-cuts are submodular
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 Bi-partite graph has 
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Submodularity & bipartite cuts

 Same bipartite graph

 V is a set of “objects”, in our case it will be 
word (or types).

 F is a set of “features” (e.g., could be tags, or 
any other possible features of the words).

 A node v V connected to an f  F if object v 
has feature f.

 Goal: Partition V into clusters, to minimize 
the feature overlap, while keeping clusters 
balanced. 
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Bipartite cuts & submodularity

 For SV,  c(S) is the 
number of features 
common to both X 
and V - S.

 c({1,2,5}) = |{b,d,e}|

 c(X) is symmetric 
submodular

 We can bi-partition V 
in polynomial time.
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Maintaining Balanced Clusters
 We could minimize the above, but we also want to 

maintain balance. Let                       be a partition of 
the objects. Criteria to minimize becomes:

 This criteria penalizes small clusters since we divide 
by the size of each one.

 Minimizing this criteria is unfortunately NP-
complete (Shi & Malik). 

 We define an iterative procedure guaranteed to 
find a form of “local” optima.
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 For any biparition and            let

Local Split and Swap
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There exists a good swap
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 Theorem (Narayanan 2003): Let             be a 
bipartition of    (so                 and                   )  
and let                   be a proper subset of    
satisfying

Then

 Therefore, if we find such a U, we can 
guarantee a local step in the right direction 
to reduce ratioCut.

1 2( , )S S


1 2S S  1 2S S 

1U S   1S

BestAvgGain AvgGain(U)
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Finding a good swap
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 But how do we find such a U?

 Theorem (Narayanan 2003). It is the case 
that                          iff there is a subset            
such that

 So we need to be able to solve this 
minimization problem for all possible 
values of , and when we find it for all  we 
try them all.
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Finding a good swap
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 How do we find the solution to the 
following

for all values ?

 Turns out there are no more than |V| 
distinct solutions, with |V| distinct values 
of  and they can all be found 
simultaneously by an amazing algorithm 
by Tarjan (parametric flow) in O(|V|2|E}) 
time.

1

( ) | |min{ }cX S
X X


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Partition sub-splitting & swap
 Represent as a flow, and use Tarjan’s 

parametric max-flow (min-cut) algorithm 
(finds solutions for all ).
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Iterative Algorithm To Improve 
RatioCut
1. Start with an arbitrary bi-partition

2. Compute a local move (O(|V|2|E|)) 
using parametric max-flow procedure.

3. Try all |V| possible improvements, and 
take the one that is best.

4. If an improvement was found, go to 1, 
otherwise stop.

 This gives a bi-partition: We partition 
the partitions to refine the clustering 
(top-down procedure) as needed.
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Application: word clustering in 
language models

 Words on the left, their 
features on the right.

 The“features” of a 
word can be the words 
that occur to the right 
of it in a text corpus.

 Optimal for bi-gram 
LM,  approximate for a 
tri-gram LM.
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Application: word clustering in 
language models

 Clusters are used in a factored language 
model with generalized backoff (Bilmes & 
Kirchhoff, HLT03), (Kirchhoff’2004).

 In a bi-gram, we first backoff to the 
cluster of the previous word as in:

where c(w) is the clustering of the 
previous word.
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Language model perplexity results.
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 497 clusters on Wall Street Journal (WSJ) 
data from the Penn Treebank 2 tagged 
(88-89) WSJ collection. Factored language 
models using Kneser-Ney smoothing, all 
done using Stolcke’s SRILM.

 Results for both bi-gram (for which 
algorithm is optimal) and tri-gram (for 
which algorithm is only an 
approximation).



Language model PPL results
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 Why do we care about bigrams?

 If we can obtain good PPL results with a 
bigram, that can be used in a multi-pass 
ASR system to generate 1st pass lattices, 
but it a bigram still has small state space.



Language model PPL results
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 Comparing results to manually-generated 
(cheating) POS tags, which potentially can 
look into the future (which is why it is 
cheating).



Conclusion

1. Submodularity is a powerful concept

2. Like convexity, it is sometimes possible 
to define tractable algorithms but in this 
case over discrete sets.

3. The polynomiality of submodular 
optimization pushes the boundary of 
the set of discrete problems that can be 
solved exactly.
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The end
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