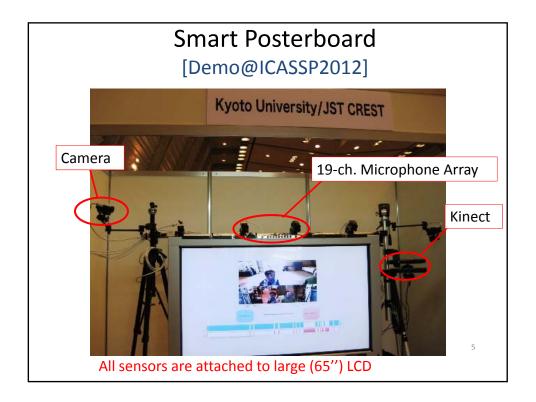
Smart Posterboard: Multi-modal Sensing and Analysis of Poster Conversations

Tatsuya Kawahara (Kyoto University, Japan)


http://www.ar.media.kyoto-u.ac.jp/crest/

JST CREST Project (2009-2014)

- PI: Prof. Tatsuya Kawahara (Kyoto University)
- Kyoto University
 - Prof. Yuichi Nakamura (Video Processing)
 - Mr. Hiromasa Yoshimoto
 - Prof. Takashi Matsuyama (Computer Vision)
 - Dr. Tony Tung
 - Prof. Sadao Kurohashi (Natural Language Processing)
 - Dr. Yugo Murawaki
- Nara Institute of Science & Technology
 - Assoc. Prof. Hiroshi Saruwatari (Acoustic Processing)

Why Poster Sessions?

- Norm in conferences & open-houses
 - But not recorded at all,while many lectures are now being recorded
- Interactive & multi-modal
 - A small audience can make questions at any time
 - Gaze and backchannels play an important role
- Long and redundant ← repeated presentations
 - → need for efficient browsing of the recordings

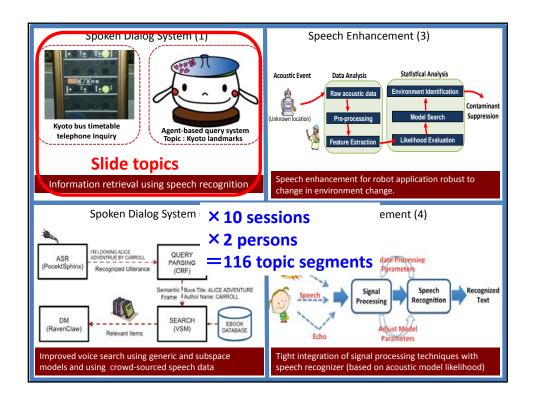
Goal (Application Scenario)

Modeling human interaction behaviors

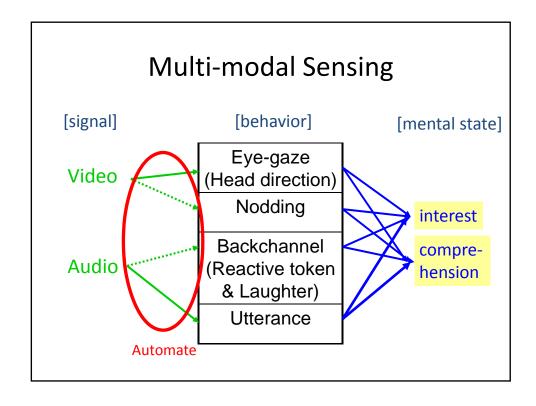
- A new indexing scheme of conversation archives
 - Review of QA
 - Portion difficult for audience to follow (→ presenter)
 - Interesting spots (→ presenter & third-party viewers)
 "People would be interested in what other people were interested in."
- A model of intelligent conversational agents (future topic)

Problems & Tasks

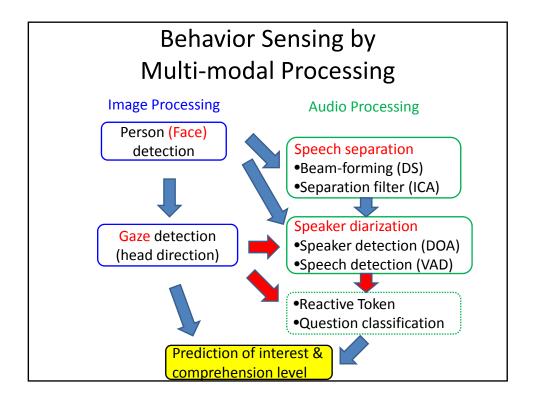
- Multi-modal signal-level sensing
 - Face detection, eye-gaze detection
 - → who came to the poster
 - Speech separation, speaker diarization
 - > what they said
- High-level indexing using multi-modal behaviors
 - Interest level estimation
 - → which part they were attracted
 - Comprehension level estimation
 - → which part was difficult to follow


Recording of Poster Conversations with Smart Posterboard

65' LCD Screen + Microphone Array + Cameras


Setting of Poster Conversations

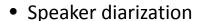
- Presentation of research overview
 - 4 or 8 slides of rather independent topics (=slide topics)
 - → Easy to annotate interest & comprehension level
- Audience of two persons
 - Young researchers, who are not familiar with the presenter and the topics
- Duration: 20-30 minutes
- 10 sessions → 58 slide topics


Transcriptions & Annotations of Poster Conversations

- Manual transcription of speech
 - IPU, clause unit
 - Fillers, Backchannels (reactive tokens), Laughter
- Non-verbal behavior labels (almost automated)
 - Eye-gaze (to other person & poster)
 - ← eye-track recorder (initially for ground-truth)
 - ← Kinect sensor + head-orientation tracking
 - Nodding...non-verbal backchannel
 - ← accelerometer
 - ← Kinect sensor + head-orientation tracking

Multi-modal Sensing

- Challenges in poster conversations
 - Multiple persons (+replacing)
 - Moving
 - Talking at distance (+background noise)
 - ... No prior work in acoustic research!!
- All sensors are attached to posterboard
 - 19-channel microphone array, Kinect
 - [portable version] Kinect only (for 1 person)

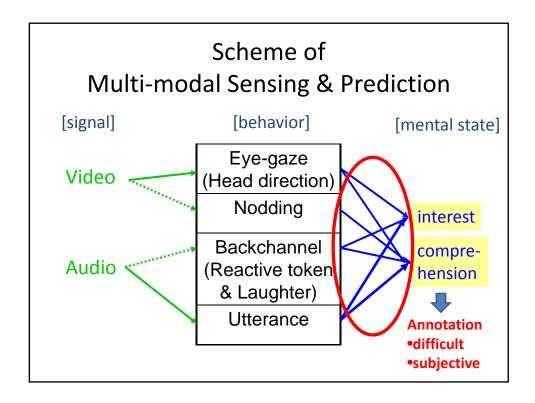

Gaze Detection

- Gaze ← Head direction tracking
 - Difference <10 degree, in poster conversations
- Procedure
 - 1. Face detection....color & TOF information
 - 2. Head model estimation...3D model
 - 3. Head tracking...particle filter
 - 4. Identification of gaze object: poster or participants
- Online & real-time processing with GPU
- Accuracy of 90%
- (cf.) Nodding is also detected in this process

Speech Separation & Speaker Diarization

- Separation & enhancement of distant speech
 - Beam-forming to speakers
 - Noise suppression via BSSA

Location information by image processing

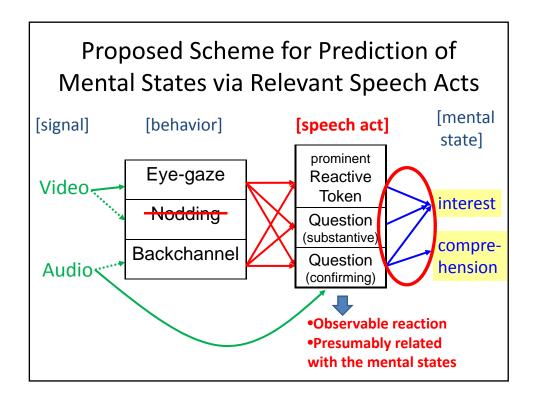


- DoA estimation
- Voice Activity Detection on enhanced speech
- Presenter's speech: recall & precision: 85%
- Audience's speech: recall: 70%, precision: 85%

Detection of Reactive Tokens & Laughter

- GMM classification
- Non-lexical reactive tokens
 - _「へー」「あー」「ふーん」
 - Characteristic prosodic patterns
 - Recall: 30%, Precision 80%
 - → apparent (=significant) tokens can be detected
- Laughter
 - Recall & Precision: 70%
 - Laugher is not frequent and often used for relaxing in poster conversations

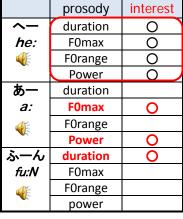
Definition of Interest & Comprehension Levels


- "gold-standard" annotation: ask every participant to mark for each slide topic after the session
 - Not possible in a large scale
 - Subjective and may not be so reliable

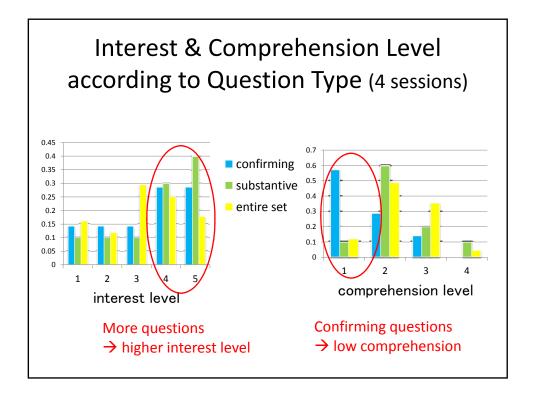
- Focus on speech acts
 - Prominent reactive tokens [Kawahara IS2010&IPSJ11]
 - Questions raised by audience

"audience ask more questions when they are attracted."

- Confirming questions: to make sure understanding
- Substantive questions: asking on what was not explained

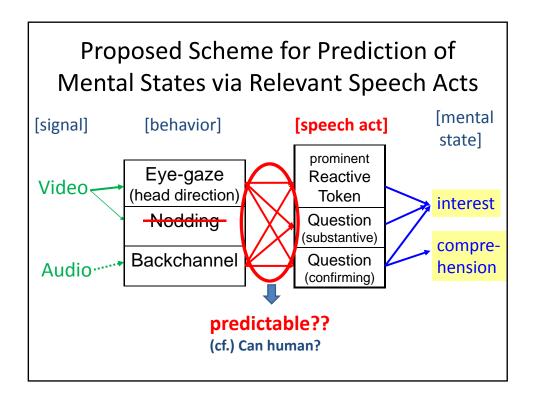


Relationship of Reactive Tokens and Interest Level [Kawahara IS2010]


- Non-lexical
- Never used for acknowledgment ("wow")
- Prominent prosodic patterns

Signal strong reaction

(p<0.05)


Definition of Interest & Comprehension Level

- High interest level
 - ← questions of any types
 - ← prominent reactive tokens
- Low comprehension level (in spite of interest)
 ← confirming questions

Useful in reviewing the poster sessions

- Interesting spots (→ presenter & third-party viewers)
- Portion difficult for audience to follow (→ presenter)

Relationship between Backchannels and Questions

- Exclude prominent reactive tokens...less than 20%
- Majority are "hai" ("yeah", "okay")
- Frequency (count/utterance) in each topic segment

	Confirming	Substantive	Entire set
backchannel	0.53	0.59	0.42

- More backchannels
 - → more questions, especially substantive questions

Relationship between

Eye-gaze (at presenter) and Questions

- Frequency & duration of eye-gaze in each topic segment
 - In most of time, participants look at poster
 - Eye-gaze at presenter has a reason and effect

	Confirming	Substantive	Entire set
Gaze occurrence	0.38	1.02	0.64
Gaze duration	0.05	0.15	0.07

- Confirming questions ← increase in gaze at poster
 - more focused on poster, trying to understand
- Substantive questions ← increase in gaze at presenter
 - try to attract presenter's attention for taking a turn

Machine Learning for Prediction

Features

 $F = \{f_1, f_2, f_3\} = \{\text{backchannel, gaze occurrence, gaze duration}\}$

• Naïve Bayes classifier

$$p(c \mid F) = p(c) * \prod p(f_i \mid c)$$

- Estimation of p(f/c)
 - histogram quantization (3 or 4 bins)

- Circumvent estimation of model parameters
- Leave-one(session)-out cross validation using 10 sessions

Prediction of Topic Segments involving Questions and/or Reactive Tokens (=high interest)

	F-measure	accuracy
baseline (chance rate)	0.49	49.1%
(1) backchannel	0.59	55.2%
(2) gaze occurrence	0.63	61.2%
(3) gaze duration	0.65	57.8%
combination of (1)-(3)	0.70	70.7%

- •Backchannel & gaze features lead to significant improvement
- Combination of both results in the best accuracy

Identification of Question Type of Confirming vs. Substantive

(=comprehension level)

	accuracy
baseline (chance rate)	51.3%
(1) backchannel	56.8%
(2) gaze occurrence	75.7%
(3) gaze duration	67.6%
combination of (1)-(3)	75.7%

- •All features lead to improvement
- •Gaze occurrence alone achieves the best accuracy
- •Need to parameterize backchannel patterns?

Summary

- Multi-modal signal-level sensing
 - "who came to the poster and what they said"
 - Combination of multi-modal information
- High-level indexing using multi-modal behaviors
 - Interest & comprehension level
 - using multi-modal features (backchannel & eye-gaze)
 - chance rate (50%) \rightarrow over 70%
- Ongoing work
 - Tight integration of gaze and speech information
- Implemented on smart posterboard system
 - → poster session browser