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Application: Data-Driven Motion Reconstruction

Overview

� Audio Features based on Chroma Information
Application: Audio Matching

� Motion Features based on Geometric Relations
Application: Motion Retrieval

� Audio Features based on Tempo Information
Application: Music Segmentation

� Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction



Chroma-based Audio Features

� Very popular in music signal processing

� Based equal-tempered scale of Western music

� Captures information related to harmony

� Robust to variations in instrumentation or timbre

Chroma-based Audio Features

Example: Chromatic scale
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Enhancing Chroma Features

� Making chroma features more robust to changes in 
timbre

� Combine ideas of speech and music processing

� Usage of audio matching framework for evaluating
the quality of obtained audio features

M. Müller and S. Ewert
Towards Timbre-Invariant  Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, 
pp. 649-662, 2010.

Motivation: Audio Matching
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Chroma Features
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Enhancing Timbre Invariance
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Chroma Toolbox

� There are many ways to implement chroma features
� Properties may differ significantly
� Appropriateness depends on respective application

� http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
� MATLAB implementations for various chroma variants

Overview

� Audio Features based on Chroma Information
Application: Audio Matching

� Motion Features based on Geometric Relations
Application: Motion Retrieval

� Audio Features based on Tempo Information
Application: Music Segmentation

� Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Motion Capture Data

� 3D representations 
of motions

� Computer animation

� Sports

� Gait analysis

Motion Capture Data

Optical System

Motion Capture Data Motion Retrieval

� = MoCap database

� = query motion clip

� Goal: find all motion 
clips in     similar to  



Motion Retrieval Motion Retrieval

� Numerical similarity 
vs. logical similarity

� Logically related � Logically related 
motions may exhibit 
significant spatio-
temporal variations

Relational Features

� Exploit knowledge of kinematic chain

� Express geometric relations of body parts

� Robust to motion variations� Robust to motion variations

Meinard Müller, Tido Röder, and Michael Clausen
Efficient content-based retrieval of motion capture data.
ACM Transactions on Graphics (SIGGRAPH), vol. 24, pp. 677-685, 2005.

Meinard Müller and Tido Röder
Motion templates for automatic classification and retrieval of motion 
capture data.
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on 
Computer Animation (SCA), Vienna, Austria, pp. 137-146, 2006.

Relational Features

Relational Features Relational Features

Right knee 
bent?

Right foot
fast?

Right hand
moving upwards?
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Motion Templates (MT)
Average template

Motion Templates (MT)
Quantized template

1

*

0

� Gray areas indicate inconsistencies / variations
� Achieve invariance by disregarding gray areas

MT-based Motion Retrieval MT-based Motion Retrieval
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MT-based Motion Retrieval: Jumping Jack MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Jumping Jack

τ

MT-based Motion Retrieval: Elbow-To-Knee

τ

MT-based Motion Retrieval: Cartwheel

Matching curve using average MT

Matching curve blending out variations

MT-based Motion Retrieval: Throw



MT-based Motion Retrieval: Throw MT-based Motion Retrieval: Basketball

MT-based Motion Retrieval: Basketball MT-based Motion Retrieval: Lie Down Floor

MT-based Motion Retrieval: Lie Down Floor Overview

� Audio Features based on Chroma Information
Application: Audio Matching

� Motion Features based on Geometric Relations
Application: Motion Retrieval

� Audio Features based on Tempo Information
Application: Music Segmentation

� Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction



Music Signal Processing
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Analysis tasks
� Segmentation
� Structure analysis
� Genre classification
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Relative comparison
of music audio data

� Music synchronization
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Audio features 
� Musically meaningful
� Semantically expressive
� Robust to deviations
� Low dimensionality
� …

Need of robust mid-level
representations

Mid-Level Representations

Musical Aspect Features Dimension

Timbre MFCC features 10 - 15

Harmony Pitch features 60 - 120

Harmony Chroma features 12Harmony Chroma features 12

Tempo Tempogram > 100
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Musical Aspect Features Dimension

Timbre MFCC features 10 - 15

Harmony Pitch features 60 - 120

Harmony Chroma features 12Harmony Chroma features 12

Tempo Tempogram > 100

Tempo Cyclic tempogram 10 - 30

Peter Grosche, Meinard Müller, and Frank Kurth
Cyclic tempogram – a mid-level tempo representation for music signals.
Proceedings of IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP), Dallas, Texas, USA, pp. 5522-5525, 2010.



Novelty Curve

Example: Waltz, Jazz Suite No. 2
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Novelty Curve

1. Spectrogram
2. Log compression
3. Differentiation
4. Accumulation

Steps:

4. Accumulation
5. Normalization

Normalized novelty curve
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Log-Scale Tempogram
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Audio Segmentation
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� Audio Features based on Chroma Information
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Application: Motion Retrieval

� Audio Features based on Tempo Information
Application: Music Segmentation

� Depth Image Features based on Geodesic Extrema
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Data-Driven Motion Reconstruction

� Goal: Reconstruction of 3D human poses from a 
depth image sequence

� Data-driven approach using MoCap database

Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and 
Christian Theobalt
A data-driven approach for real-time full body pose reconstruction 
from a depth camera.
Proceedings of the 13th International Conference on Computer Vision 
(ICCV), 2011.

� Depth image features: Geodesic extrema

Data-Driven Motion Reconstruction

Input: Depth image Output:  3D pose

Data-Driven Motion Reconstruction

Voting

Local opt. Previous frame
Input Output

Database lookup



Data-Driven Motion Reconstruction
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Voting

Local opt. Previous frame
Input Output

Database lookup

� Database lookup 
� Local optimization
� Voting scheme

Need of motion features
for cross-modal comparison

Depth Image Features

� Point cloud

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010] Depth Image Features

� Point cloud
� Graph

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]



Depth Image Features

� Point cloud
� Graph

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010] Depth Image Features

� Point cloud
� Graph
� Distances from root

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]

Depth Image Features

� Point cloud
� Graph
� Distances from root
� Geodesic extrema

[Plagemann, Ganapathi, Koller, 
Thrun, ICRA 2010]

Observation: First five
extrema often correspond
to end-effectors and head

Database Lookup 

Local Optimization Voting Scheme

� Combine database lookup & local optimization

� Inherit robustness from database pose

� Inherit accuracy from local optimization pose

� Compare with original raw data pose
using a sparse symmetric Hausdorff distance



Voting Scheme
Distance measure

Voting Scheme
Distance measure (Hausdorff)

Voting Scheme
Distance measure (Hausdorff, symmetric, sparse)

Experiments
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Informed Feature Representations

� Exploit model assumptions 
– Equal-tempered scale
– Kinematic chain

� Deal with variances on feature level
– Enhancing timbre invariance

Features with 
explicit meaning.

Makes subsequent  
steps more robust– Relational features

– Quantized motion templates

� Consider requirements for specific 
application 
– Explicit information often not required
– Mid-level features

steps more robust
and efficient!

Avoid making 
problem harder as 

it is.
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