

Thanks

- Sebastian Ewert
- Peter Grosche
- Andreas Baak
- Tido Röder

Overview

- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Meinard Müller

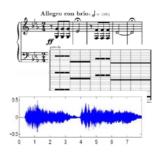
2007 Habilitation, Bonn

2007-2012 Max-Planck Institute for Informatics in Saarbrücken

> Senior Researcher Multimedia Information Retrieval & Music Processing

March 2012 Bonn University Professorship Audiosignalanalyse

Music and Motion



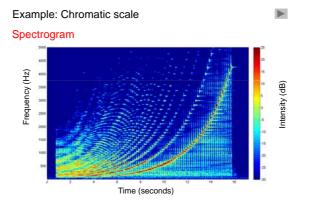
Overview

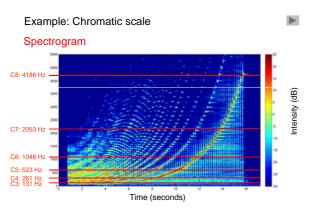
- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

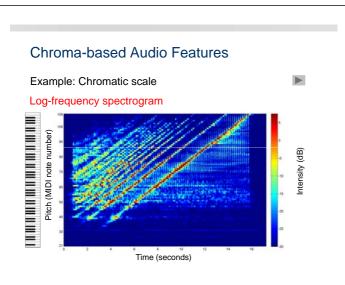
Chroma-based Audio Features

- Very popular in music signal processing
- Based equal-tempered scale of Western music
- Captures information related to harmony
- Robust to variations in instrumentation or timbre

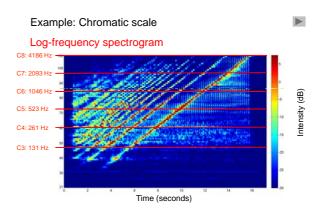
Chroma-based Audio Features



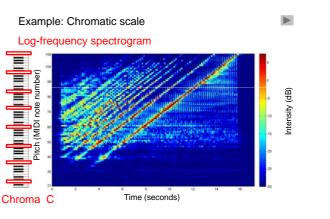


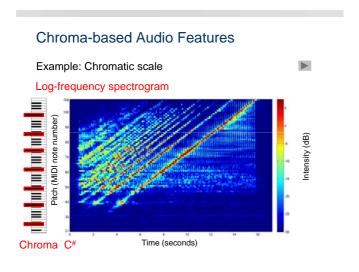


Chroma-based Audio Features

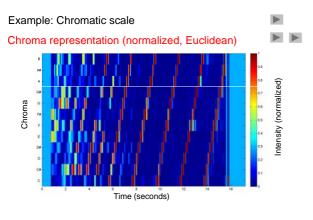


Chroma-based Audio Features

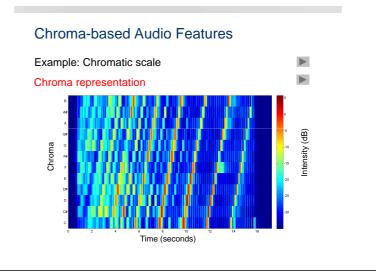




Chroma-based Audio Features



Motivation: Audio Matching



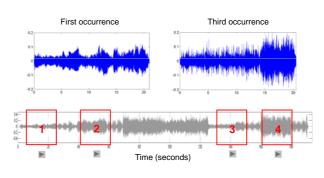
Enhancing Chroma Features

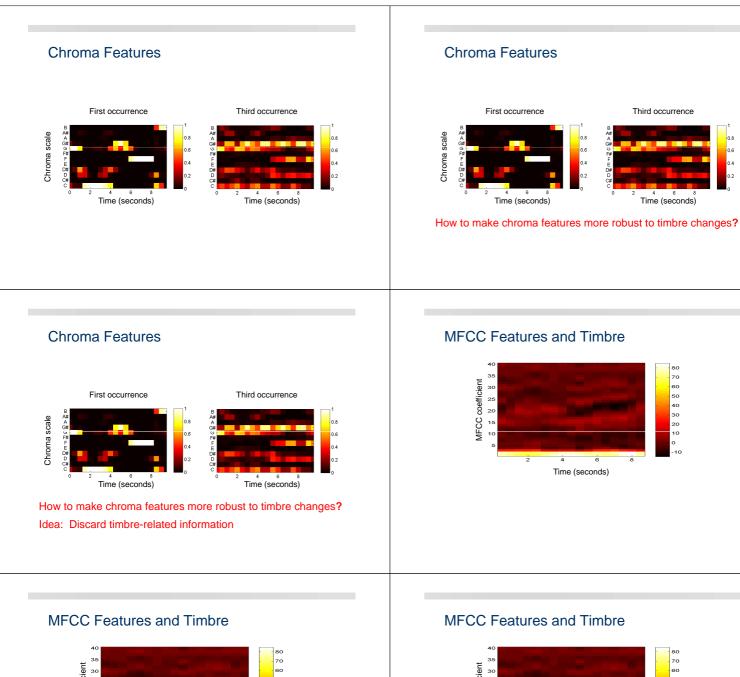
- Making chroma features more robust to changes in timbre
- Combine ideas of speech and music processing
- Usage of audio matching framework for evaluating the quality of obtained audio features

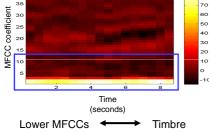
M. Müller and S. Ewert **Towards Timbre-Invariant Audio Features for Harmony-Based Music.** IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, pp. 649-662, 2010.

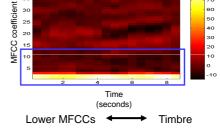
Motivation: Audio Matching

Four occurrences of the main theme

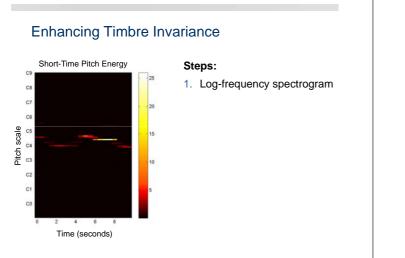




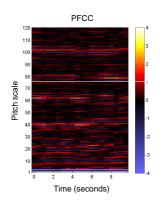




Idea: Discard lower MFCCs to achieve timbre invariance



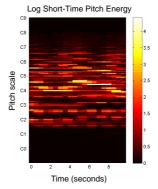
Enhancing Timbre Invariance



Steps:

- 1. Log-frequency spectrogram
- 2. Log (amplitude)
- 3. DCT

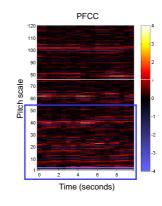
Enhancing Timbre Invariance



Steps:

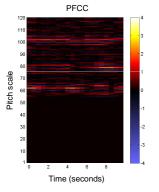
- 1. Log-frequency spectrogram
- 2. Log (amplitude)

Enhancing Timbre Invariance



Steps:

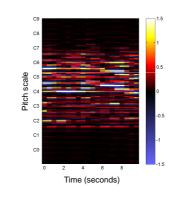
- 1. Log-frequency spectrogram
- 2. Log (amplitude)
- 3. DCT
- 4. Discard lower coefficients [1:n-1]



Steps:

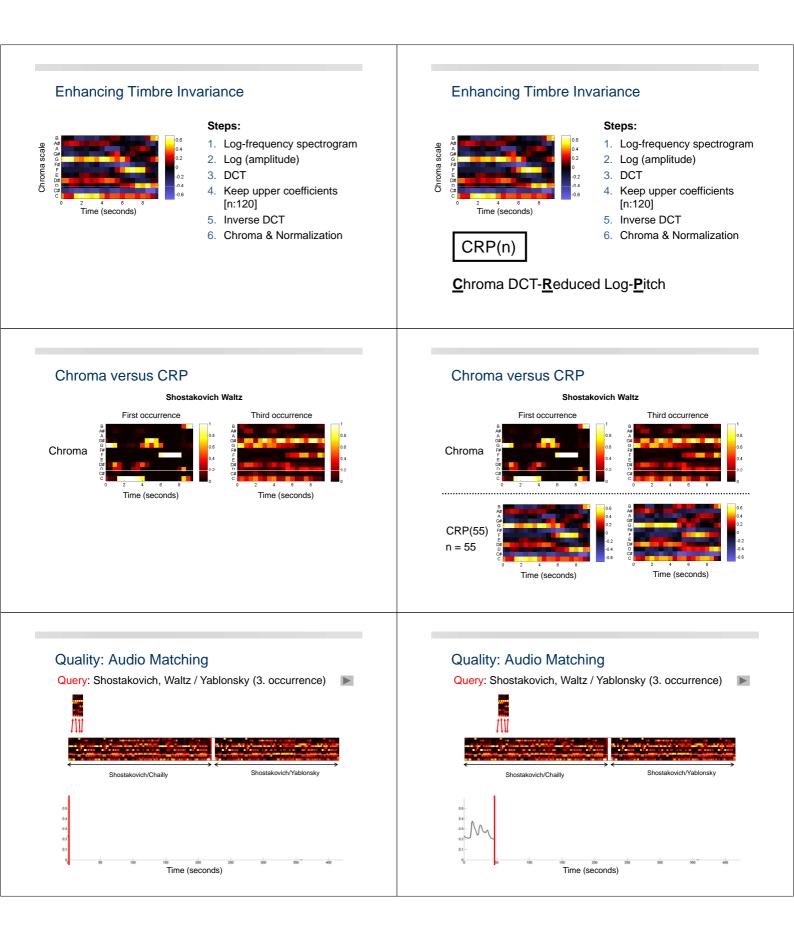
- 1. Log-frequency spectrogram
- 2. Log (amplitude)
- 3. DCT
- 4. Keep upper coefficients [n:120]

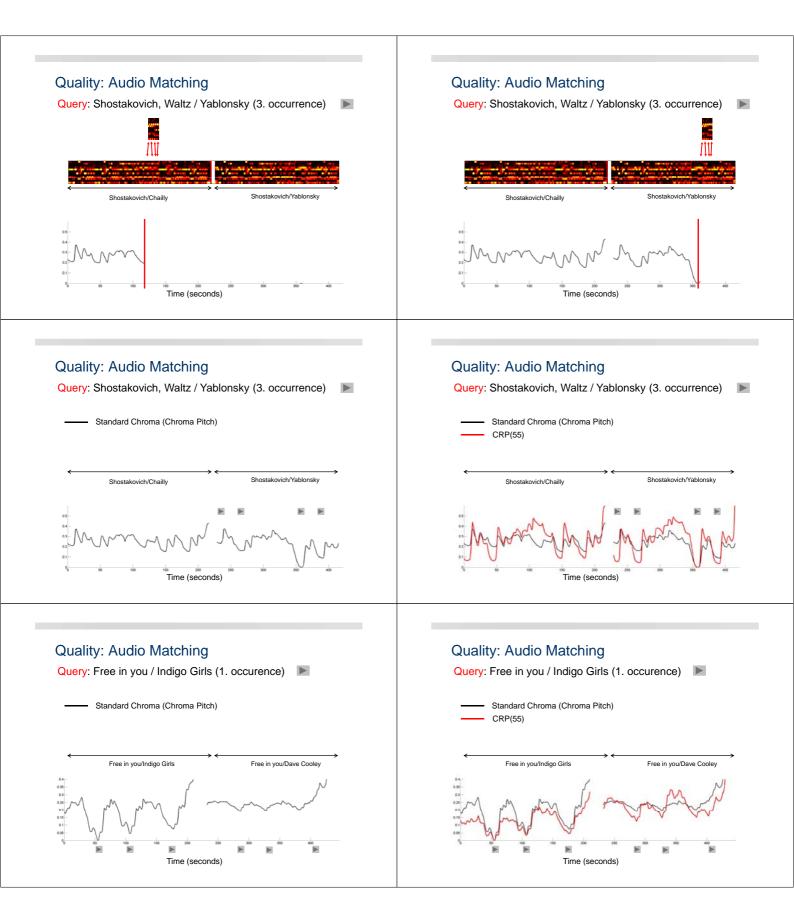
Enhancing Timbre Invariance



Steps:

- 1. Log-frequency spectrogram
- 2. Log (amplitude)
- 3. DCT
- 4. Keep upper coefficients [n:120]
- 5. Inverse DCT





Chroma Toolbox

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants

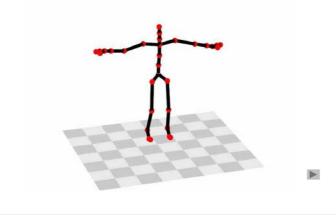
Overview

- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Motion Capture Data

- 3D representations of motions
- Computer animation
- Sports
- Gait analysis

Motion Capture Data

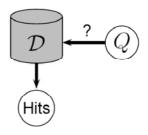


Motion Capture Data

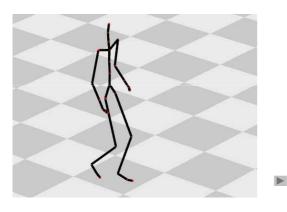
Optical System

Motion Retrieval

- \mathcal{D} = MoCap database
- Q = query motion clip
- Goal: find all motion clips in \mathcal{D} similar to Q



Motion Retrieval



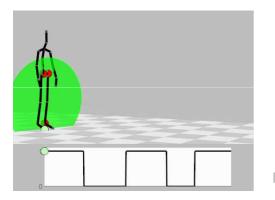
Relational Features

- Exploit knowledge of kinematic chain
- Express geometric relations of body parts
- Robust to motion variations

Meinard Müller, Tido Röder, and Michael Clausen Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics (SIGGRAPH), vol. 24, pp. 677-685, 2005.

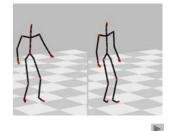
Meinard Müller and Tido Röder **Motion templates for automatic classification and retrieval of motion capture data**. Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), Vienna, Austria, pp. 137-146, 2006.

Relational Features

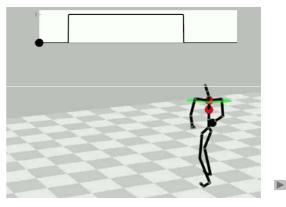


Motion Retrieval

- Numerical similarity vs. logical similarity
- Logically related motions may exhibit significant spatiotemporal variations



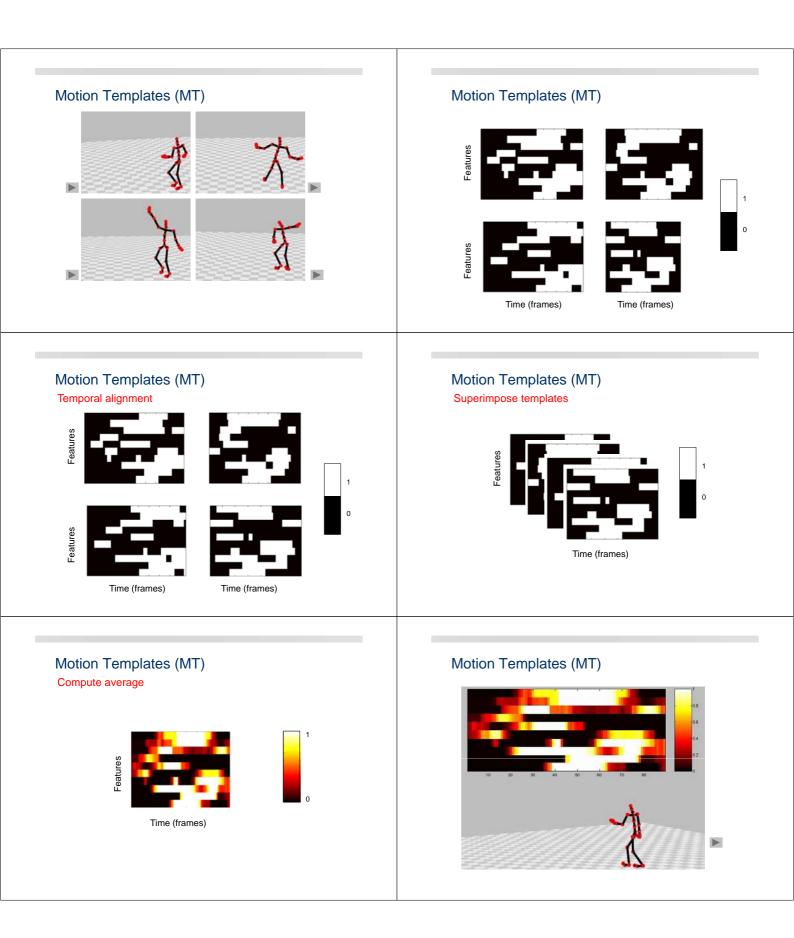
Relational Features

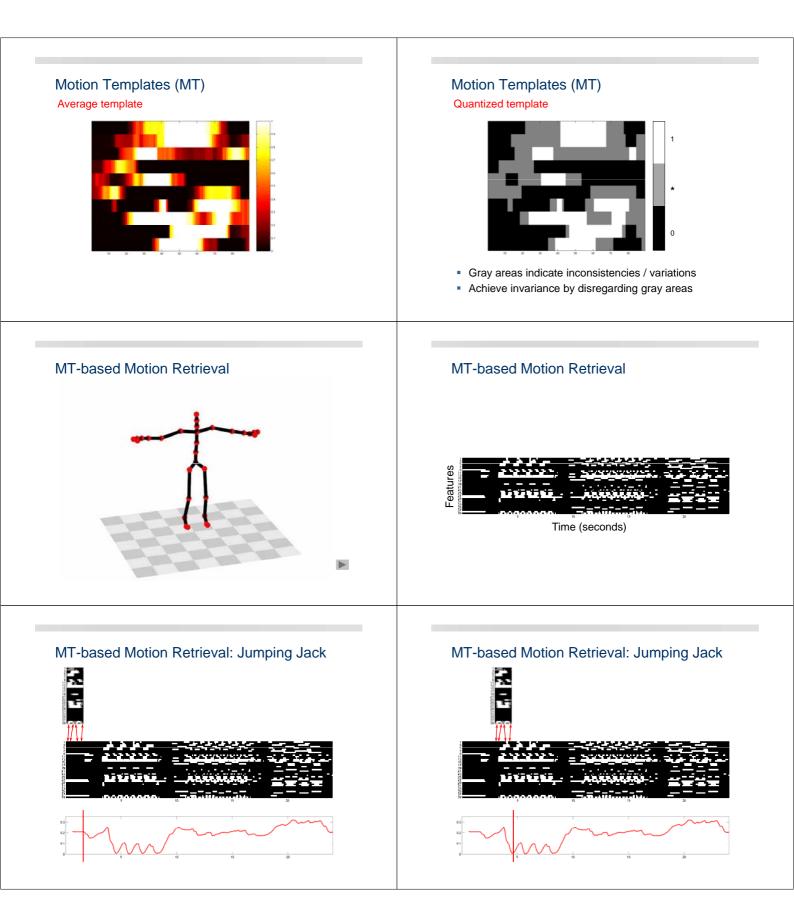


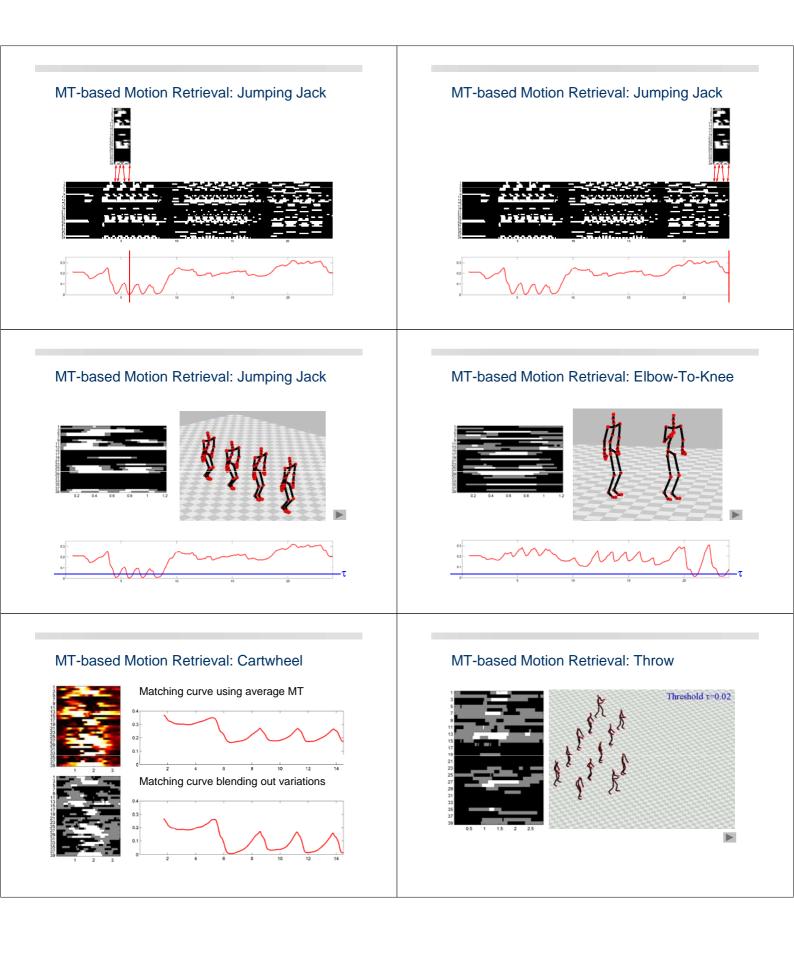
Relational Features

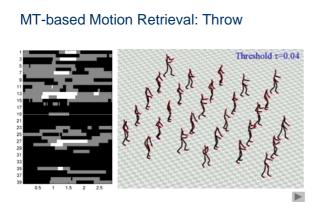
Right foot fast? Right hand moving upwards?

Right knee bent?

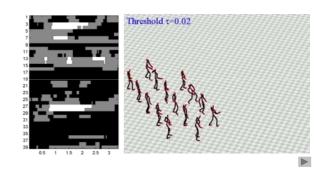




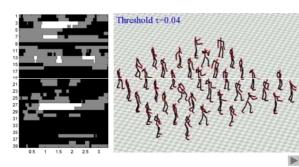




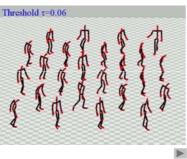
MT-based Motion Retrieval: Basketball



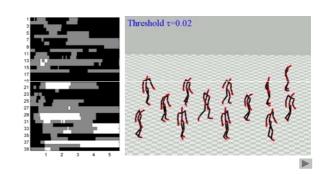
MT-based Motion Retrieval: Basketball



MT-based Motion Retrieval: Lie Down Floor



MT-based Motion Retrieval: Lie Down Floor



Overview

- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations
 Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Music Signal Processing

- Analysis tasks
- Segmentation
- Structure analysis
- Genre classification
- Cover song identification
- Music synchronization

Music Signal Processing

Analysis tasks

- Segmentation
- Structure analysis
- Genre classification
- Cover song identification
- Music synchronization

Audio features

- Musically meaningful
- Semantically expressive
- Robust to deviations
- Low dimensionality
- ÷.

Music Signal Processing

- Analysis tasks
- Segmentation
- Structure analysis
- Genre classification .
- Cover song identification
- Music synchronization

Audio features

- Musically meaningful
- Semantically expressive
- Robust to deviations
- Low dimensionality
- .

Mid-Level Representations

Musical Aspect	Features	Dimension
Timbre	MFCC features	10 - 15
Harmony	Pitch features	60 - 120
Harmony	Chroma features	12
Tempo	Tempogram	> 100

Relative comparison

of music audio data

Music Signal Processing

Analysis tasks

- Segmentation
- Structure analysis н.
- Genre classification Cover song identification
- Music synchronization

Audio features

- Musically meaningful .
- Semantically expressive
- Robust to deviations
- Low dimensionality

of music audio data

Relative comparison

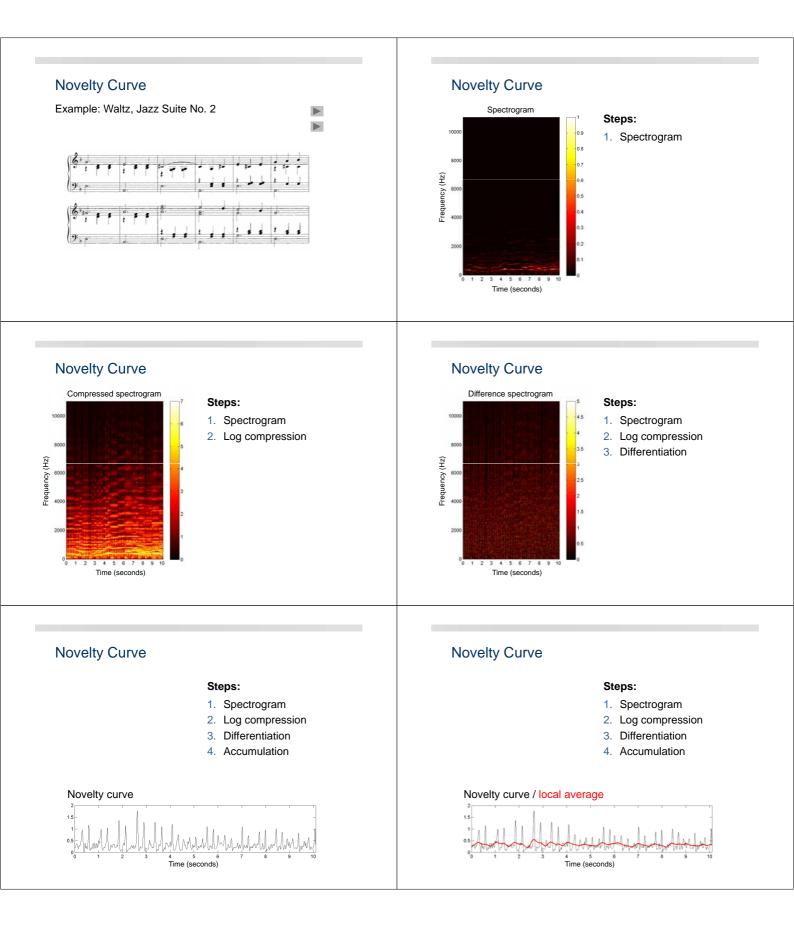
Need of robust mid-level representations

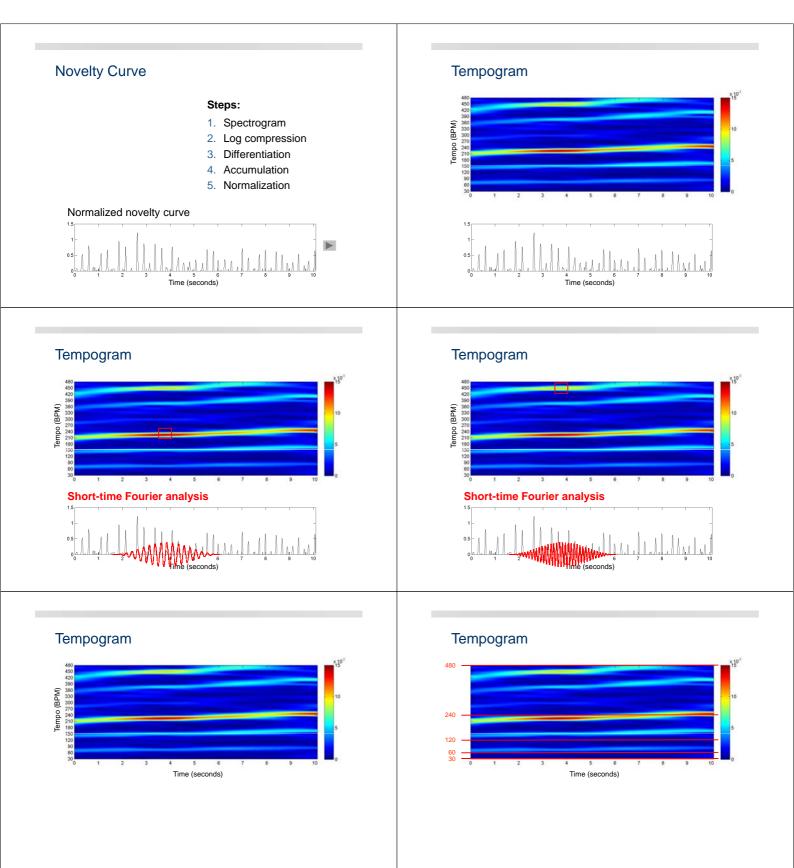
Mid-Level Representations

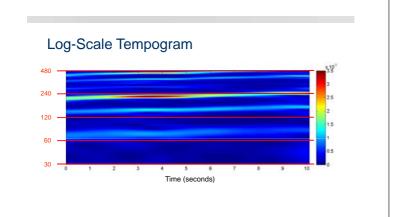
Musical Aspect	Features	Dimension	
Timbre	MFCC features	10 - 15	
Harmony	Pitch features	60 - 120	
Harmony	Chroma features	12	_
Tempo	Tempogram	> 100	
Tempo	Cyclic tempogram	10 - 30	

Peter Grosche, Meinard Müller, and Frank Kurth

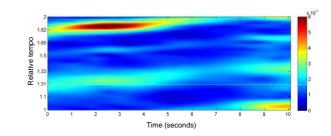
Cyclic tempogram - a mid-level tempo representation for music signals. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, Texas, USA, pp. 5522-5525, 2010.







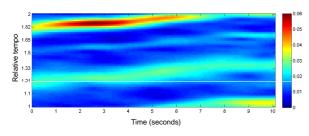
Cyclic Tempogram



Cylic projection

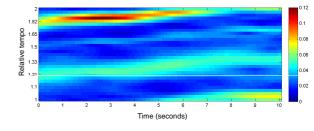
Relative to tempo class [...,30,60,120,240,480,...]

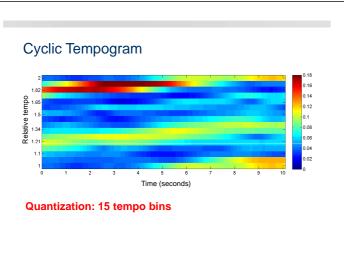
Cyclic Tempogram



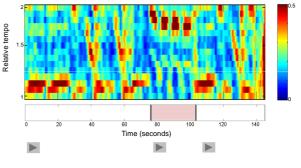
Quantization: 60 tempo bins

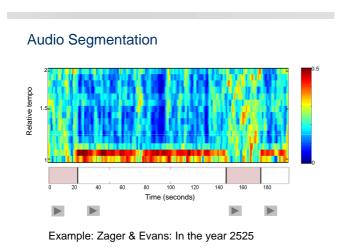
Cyclic Tempogram



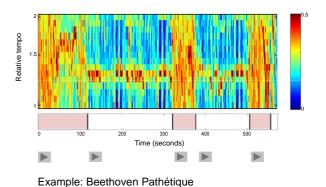


Audio Segmentation





Audio Segmentation



Overview

- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Data-Driven Motion Reconstruction

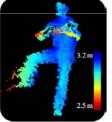
- Goal: Reconstruction of 3D human poses from a depth image sequence
- Data-driven approach using MoCap database
- Depth image features: Geodesic extrema

Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and Christian Theobalt A data-driven approach for real-time full body pose reconstruction from a depth camera. Proceedings of the 13th International Conference on Computer Vision (ICCV), 2011.

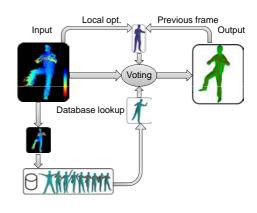
Data-Driven Motion Reconstruction

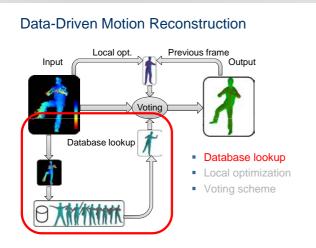
Input: Depth image

Output: 3D pose

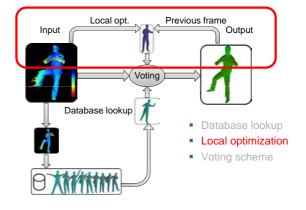


Data-Driven Motion Reconstruction

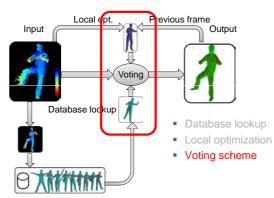




Data-Driven Motion Reconstruction



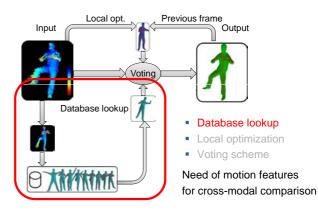
Data-Driven Motion Reconstruction



Depth Image Features

Point cloud

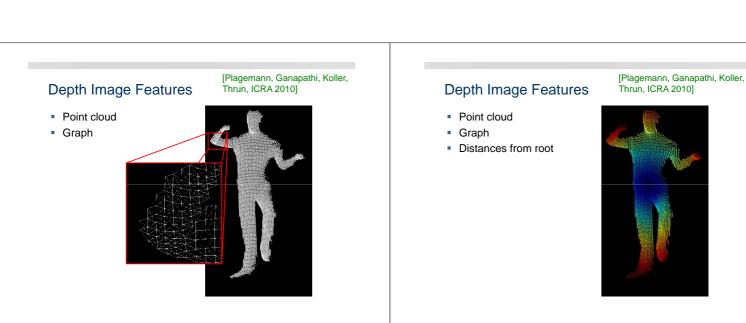
Database Lookup



Depth Image Features

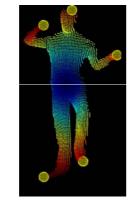
- Point cloud
- Graph

[Plagemann, Ganapathi, Koller, Thrun, ICRA 2010]



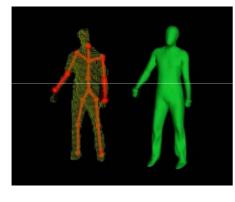
Depth Image Features

- Point cloud
- Graph
- Distances from root
- Geodesic extrema

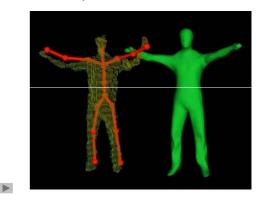


Observation: First five extrema often correspond to end-effectors and head

Local Optimization



Database Lookup

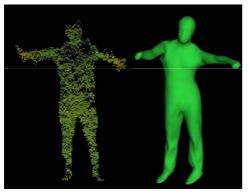


Voting Scheme

- Combine database lookup & local optimization
- Inherit robustness from database pose
- Inherit accuracy from local optimization pose
- Compare with original raw data pose using a sparse symmetric Hausdorff distance

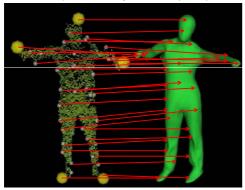
Voting Scheme

Distance measure



Voting Scheme

Distance measure (Hausdorff, symmetric, sparse)

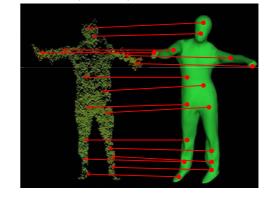


Informed Feature Representations

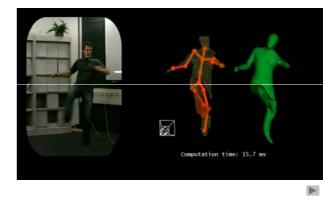
- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Voting Scheme

Distance measure (Hausdorff)



Experiments



Informed Feature Representations

- Audio Features based on Chroma Information Application: Audio Matching
- Motion Features based on Geometric Relations Application: Motion Retrieval
- Audio Features based on Tempo Information Application: Music Segmentation
- Depth Image Features based on Geodesic Extrema Application: Data-Driven Motion Reconstruction

Informed Feature Representations

- Exploit model assumptions
 - Equal-tempered scale
 Kinematic chain
- Deal with variances on feature level
 Enhancing timbre invariance
 - Relational features
 - Quantized motion templates
- Consider requirements for specific application
 - Explicit information often not required
 - Mid-level features

Makes subsequent steps more robust and efficient!

Avoid making problem harder as it is.

Selected Publications (Motion Processing)

- J. Tautges, A. Zinke, B. Krüger, J. Baumann, A. Weber, T. Helten, M. Müller, H.-P. Seidel, B. Eberhardt (2011): Motion Reconstruction Using Sparse Accelerometer Data. ACM Transactions on Graphics (TOG), Vol. 30, No. 3
- A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, C. Theobalt (2011):
 A Data-Driven Approach for Real-Time Full Body Pose Reconstruction from a Depth Camera.
 Proc. International Conference on Computer Vision (ICCV)
- G. Pons-Moll, A. Baak, T. Helten, M. Müller, H.-P. Seidel, B. Rosenhahn (2010): Multisensor-Fusion for 3D Full-Body Human Motion Capture. Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- A. Baak, B. Rosenhahn, M. Müller, H.-P. Seidel (2009): Stabilizing Motion Tracking Using Retrieved Motion Priors. Proc. International Conference on Computer Vision (ICCV)
- M. Müller, T. Röder, M. Clausen (2005): Efficient Content-Based Retrieval of Motion Capture Data. ACM Transactions on Graphics (TOG), Vol. 24, No. 3, pp. 677-685, (SIGGRAPH)

Selected Publications (Music Processing)

- M. Müller, P.W. Ellis, A. Klapuri, G. Richard (2011): Signal Processing for Music Analysis. IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 6, pp. 1088-1110.
- P. Grosche and M. Müller (2011): Extracting Predominant Local Pulse Information from Music Recordings.
 IEEE Trans. on Audio, Speech & Language Processing, Vol. 19, No. 6, pp. 1688-1701.
- M. Müller, M. Clausen, V. Konz, S. Ewert, C. Fremerey (2010): A Multimodal Way of Experiencing and Exploring Music. Interdisciplinary Science Reviews (ISR), Vol. 35, No. 2.
- M. Müller and S. Ewert (2010): Towards Timbre-Invariant Audio Features for Harmony-Based Music.
 IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, pp. 649-662.
- F. Kurth, M. Müller (2008): Efficient Index-Based Audio Matching. IEEE Trans. Audio, Speech & Language Processing, Vol. 16, No. 2, 382-395.
- M. Müller (2007): Information Retrieval for Music and Motion. Monograph, Springer, 318 pages