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Overview

= Audio Features based on Chroma Information
Application: Audio Matching




Chroma-based Audio Features

Chroma-based Audio Features

Example: Chromatic scale >
= Very popular in music signal processing Spectrogram
= Based equal-tempered scale of Western music
E oo =
= Captures information related to harmony B )
S =
= Robust to variations in instrumentation or timbre § g
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Chroma-based Audio Features Chroma-based Audio Features
Example: Chromatic scale > Example: Chromatic scale >
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Chroma-based Audio Features

Chroma-based Audio Features

Example: Chromatic scale > Example: Chromatic scale >
Log-frequency spectrogram Chroma representation >
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Chroma-based Audio Features Enhancing Chroma Features
Example: Chromatic scale > . .
= Making chroma features more robust to changes in
Chroma representation (normalized, Euclidean) > timbre
_ = Combine ideas of speech and music processing
=)
Q
g ‘_é = Usage of audio matching framework for evaluating
2 2 the quality of obtained audio features
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M. Miiller and S. Ewert

Towards Timbre-Invariant Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3,
pp. 649-662, 2010.

Motivation: Audio Matching
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Motivation: Audio Matching

Four occurrences of the main theme
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Chroma Features

First occurrence Third occurrence

Chroma Features
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How to make chroma features more robust to timbre changes?
Chroma Features MFCC Features and Timbre
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How to make chroma features more robust to timbre changes?

Idea: Discard timbre-related information

MFCC coefficient
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MFCC Features and Timbre

MFCC coefficient

Time
(seconds)

Lower MFCCs <> Timbre

MFCC Features and Timbre

MFCC coefficient

Time
(seconds)

Lower MFCCs <> Timbre

Idea: Discard lower MFCCs to achieve timbre invariance




Pitch scale
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Enhancing Timbre Invariance

Short-Time Pitch Energy Steps:

1. Log-frequency spectrogram
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Pitch scale

Enhancing Timbre Invariance

Log Short-Time Pitch Energy Steps:

Ll 1. Log-frequency spectrogram
L lss 2. Log (amplitude)
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Enhancing Timbre Invariance

PFCC Steps:
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3. DCT
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Enhancing Timbre Invariance

PFCC Steps:

1. Log-frequency spectrogram
2. Log (amplitude)

3. DCT

4. Discard lower coefficients
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Enhancing Timbre Invariance

PFCC Steps:

. 1. Log-frequency spectrogram
2. Log (amplitude)

: 3. DCT

! 4. Keep upper coefficients
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Enhancing Timbre Invariance

s Steps:
1. Log-frequency spectrogram
2. Log (amplitude)
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Enhancing Timbre Invariance

Enhancing Timbre Invariance

Steps: Steps:
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6. Chroma & Normalization 6. Chroma & Normalization
CRP(n)
Chroma DCT-Reduced Log-Pitch
Chroma versus CRP Chroma versus CRP
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Quiality: Audio Matching
Query: Shostakovich, Waltz / Yablonsky (3. occurrence) »
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Quality: Audio Matching

Quality: Audio Matching
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Chroma Toolbox Overview

= There are many ways to implement chroma features "
= Properties may differ significantly

= Appropriateness depends on respective application
= Motion Features based on Geometric Relations
Application: Motion Retrieval

Chroma Tooclbox: Pitch, Chroma, CENS, CRP
(] ] [ ] ] wnnait "

= http://www.mpi-inf. mpg.de/resources/MIR/chromatoolbox/
= MATLAB implementations for various chroma variants

Motion Capture Data Motion Capture Data

Optical System

= 3D representations
of motions

= Computer animation

= Sports

= Gait analysis

Motion Capture Data Motion Retrieval

= D = MoCap database

‘-_/—--"‘hq..'

= ()= query motion clip

= Goal: find all motion |
clips in D similar to ()




Motion Retrieval

Motion Retrieval

= Numerical similarity
vs. logical similarity

= Logically related
motions may exhibit
significant spatio-
temporal variations

Relational Features

= Exploit knowledge of kinematic chain
= Express geometric relations of body parts

= Robust to motion variations

Meinard Mdller, Tido Réder, and Michael Clausen
Efficient content-based retrieval of motion capture data.
ACM Transactions on Graphics (SIGGRAPH), vol. 24, pp. 677-685, 2005.

Meinard Miller and Tido Roder
Motion templates for automatic classification and retrieval of motion
capture data.

Relational Features

Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on -
Computer Animation (SCA), Vienna, Austria, pp. 137-146, 2006.
Relational Features Relational Features
\
Right knee Right foot Right hand
bent? fast? moving upwards?




Motion Templates (MT)

Motion Templates (MT)

Features
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Temporal alignment
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Superimpose templates
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Motion Templates (MT)

Average template

e i

Motion Templates (MT)

Quantized template

= Gray areas indicate inconsistencies / variations
= Achieve invariance by disregarding gray areas

MT-based Motion Retrieval

MT-based Motion Retrieval

Features

Time (seconds)

MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Jumping Jack




MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Jumping Jack
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MT-based Motion Retrieval: Elbow-To-Knee
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MT-based Motion Retrieval: Cartwheel

Matching curve using average MT
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MT-based Motion Retrieval: Throw

Threshold ==0.02




MT-based Motion Retrieval: Throw

Threshold ©=0.04

MT-based Motion Retrieval: Basketball

Threshold t=0.02

hﬁ} %

MT-based Motion Retrieval: Basketball

Threshold t=0.04

MT-based Motion Retrieval; Lie Down Floor

Threshold t=0.02

MT-based Motion Retrieval: Lie Down Floor

Overview

= Audio Features based on Tempo Information
Application: Music Segmentation




Music Signal Processing

Analysis tasks

= Segmentation

= Structure analysis

= Genre classification

= Cover song identification
= Music synchronization

Music Signal Processing

Analysis tasks

= Segmentation

= Structure analysis

= Genre classification

= Cover song identification
= Music synchronization

Audio features

= Musically meaningful

= Semantically expressive
= Robust to deviations

= Low dimensionality

Music Signal Processing

Analysis tasks

= Segmentation

= Structure analysis Relative comparison
= Genre classification of music audio data
= Cover song identification

= Music synchronization

Audio features

= Musically meaningful

= Semantically expressive
= Robust to deviations

= Low dimensionality

Music Signal Processing

Analysis tasks
= Segmentation
= Structure analysis Relative comparison

= Genre classification of music audio data
= Cover song identification

= Music synchronization

Audio features

= Musically meaningful
= Semantically expressive representations
= Robust to deviations

= Low dimensionality

Need of robust mid-level

Mid-Level Representations

Timbre MFCC features 10-15
Harmony Pitch features 60 - 120
Harmony Chroma features 12

Tempo Tempogram > 100

Mid-Level Representations

Timbre MFCC features 10-15
Harmony Pitch features 60 - 120
Harmony Chroma features 12

Tempo Tempogram > 100

Tempo Cyclic tempogram 10- 30

Peter Grosche, Meinard Miiller, and Frank Kurth

Cyclic tempogram — a mid-level tempo representation for music signals.
Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Dallas, Texas, USA, pp. 5522-5525, 2010.




Novelty Curve

Novelty Curve

Frequency (Hz)

Example: Waltz, Jazz Suite No. 2 > Spectrogram
! Steps:
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Novelty curve

Steps:

1. Spectrogram

2. Log compression
3. Differentiation
4. Accumulation

2 ‘ T T

15k |
LML

1 2

| 1
/ ! j\f’\fﬁﬂlﬂ\ﬂr UT\'* 'l,ﬁf YV W ‘”{A n%-x@ J‘\JJ

, 1
’AA,v'}\/,‘/HW\,h‘,-f"‘v‘"\ﬁ

4 5 6 7 8 9 10
Time (seconds)

Novelty Curve

Steps:

1. Spectrogram

2. Log compression
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Novelty Curve

Steps:

1. Spectrogram

Log compression
Differentiation
Accumulation
Normalization
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Normalized novelty curve
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Log-Scale Tempogram
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Cyclic Tempogram

Relative tempo
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Cylic projection
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Quantization: 60 tempo bins

Cyclic Tempogram
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Quantization: 30 tempo bins

Cyclic Tempogram

Relative tem,
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Quantization: 15 tempo bins
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Audio Segmentation

Relative tempo
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Example: Brahms Hungarian Dance No. 5




Audio Segmentation

Relative tempo

0 20 40 60 80 160 120 140 160 180
Time (seconds)

Example: Zager & Evans: In the year 2525

Audio Segmentation
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Relative tempo
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Example: Beethoven Pathétique

Overview

= Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Data-Driven Motion Reconstruction

= Goal: Reconstruction of 3D human poses from a
depth image sequence

= Data-driven approach using MoCap database

= Depth image features: Geodesic extrema

Andreas Baak, Meinard Muller, Gaurav Bharaj, Hans-Peter Seidel, and
Christian Theobalt

A data-driven approach for real-time full body pose reconstruction
from a depth camera.

Proceedings of the 13th International Conference on Computer Vision
(ICCvV), 2011.

Data-Driven Motion Reconstruction

Input: Depth image Output: 3D pose

Data-Driven Motion Reconstruction

Local opt. < Previous frame

Input ﬂ Output
‘ @]
Database lookup |




Data-Driven Motion Reconstruction

Local opt. Previous frame
D < ﬂ Output

= Database lookup

Data-Driven Motion Reconstruction

Local opt. Previous frame
Input D < ﬁ Output

= Local optimization

Data-Driven Motion Reconstruction

Local ¢pt. B evious frame
DG ﬂ Output

Input

Database lod

= Voting scheme

Database Lookup

Local opt. Previous frame

Input :> < ﬁ Output
ﬂ ﬁ] >

Database Iookup

= Database lookup

Need of motion features
j for cross-modal comparison

[Plagemann, Ganapathi, Koller,

Depth Image Features Thrun, ICRA 2010]

= Point cloud

[Plagemann, Ganapathi, Koller,

Depth Image Features Thrun, ICRA 2010]

= Point cloud
= Graph




Depth Image Features

= Point cloud
= Graph

[Plagemann, Ganapathi, Koller,
Thrun, ICRA 2010]

[Plagemann, Ganapathi, Koller,

Depth Image Features ~ Thrun, ICRA2010]

= Point cloud
= Graph
= Distances from root

Depth Image Features

= Point cloud

= Graph

= Distances from root
= Geodesic extrema

Observation: First five
extrema often correspond
to end-effectors and head

[Plagemann, Ganapathi, Koller,
Thrun, ICRA 2010]

Database Lookup

Local Optimization

Voting Scheme

Combine database lookup & local optimization
Inherit robustness from database pose
Inherit accuracy from local optimization pose

Compare with original raw data pose
using a sparse symmetric Hausdorff distance




Voting Scheme

Distance measure

Voting Scheme

Distance measure (Hausdorff)

Voting Scheme

Distance measure (Hausdorff, symmetric, sparse)

Experiments

Computation time: 15.7 ms

Informed Feature Representations

= Audio Features based on Chroma Information
Application: Audio Matching

= Motion Features based on Geometric Relations
Application: Motion Retrieval

= Audio Features based on Tempo Information
Application: Music Segmentation

= Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction

Informed Feature Representations

= Audio Features based on Chroma Information
Application: Audio Matching

= Motion Features based on Geometric Relations
Application: Motion Retrieval

= Audio Features based on Tempo Information
Application: Music Segmentation

= Depth Image Features based on Geodesic Extrema
Application: Data-Driven Motion Reconstruction




Informed Feature Representations

= Exploit model assumptions ]
— Equal-tempered scale FelaFures W!th
— Kinematic chain explicit meaning.

= Deal with variances on feature level

— Enhancing timbre invariance Makes subsequent
— Relational features steps mOl’lEIFObUSt
— Quantized motion templates and efficient!

= Consider requirements for specific Avold making

application
— Explicit information often not required | Problem harder as
— Mid-level features itis.
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