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Aim of the Projectj
•Developing computational model of human behavior 

b d i l i h l f b ildibased on signal processing technology for building 
better man-machine cooperative systems.

•Members are from speech, computer vision, cognitive 
infomatics, ubiquitous system and mechatronics.

•Typical issue of man-machine mismatch is over-trust.
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Main Application Field: Drivingpp g
• The human factor (driver behavior) plays 

an important role in future automotive
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traffic safety and preserving the 
environment.
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• Socio-motivated signals of human origin 
occurring in the physical world have not 

i d h d d h l k f

20252010

received much study, due to the lack of 
large amounts of signal data. The latest 

hi l i d i h i h dvehicles, equipped with rich sensors, and 
connected to the Internet are now 

ki i iblmaking it possible.
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Automatic, Assisted and Co-operative Drivingp g
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Corpus Collectionp
Vehicle Driver

EnvironmentEnvironment
5

Signal Examples and Data Tagsg p g
• Lane change on a highway
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800 drivers 800 hrs 5 year collection_ _ _ _
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Modeling Driving Behaviorg g
• Joint distribution of a variable and its time derivative 

i i l diff i l iis equivalent to a differential equation. 
• Mathematical models of discrete/continuous hybrid 

X s Y

systems are important for behavior modeling.

( )xxf 

status Signal
pdf

Cognition
Decision

Decision
Operation

X s Y
Sensor

（Continuous）
Actuator

（Continuous）Discrete

( )xxf ,

measurement

System
diff equation

（Continuous） （Continuous）Discrete

S1 S1

GMM PWL
diff. equation

Si l d l f d i t

( )xgx =
S2 S3

( )ixf θ,
S2 S3

nnin uwx +⋅=+ ψ
1

Cognition/Decision/Operation
Signal model of dynamic system

Driver Behavior SP research topicsp
(1) Driver identification using pedal signals (2002-)
(2) P di i f d l (2004 )(2) Prediction of pedal patterns (2004-)
(3) Driver risk evaluation using EDR (2006-)
(4) H d i d i f(4) Hazardous point detection from sensor 

signals(2006-)
(5) P di i f l h j i (2008 )(5) Prediction of lane-change trajectories (2008-)
(6) Detection of drivers’ frustration (2008-)
( ) d b ( )(7) Driving data browser (2008-)
(8) Similarity measure for driving scenes (2009-)
( ) h h d ll(9) Driver coach system with detecting potentially 

dangerous events (2010-)
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(1) Multiplatform Data Collection
• Corpus based approach for generalizing 

ki h h d b

( ) p

working hypotheses suggested by 
experimental psychology.

H TeraiH. Terai
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(2) Driver Model in Control Loop( ) p
• An experimental vehicle implementing 

f d i i h h d i d l hforward assistance with the driver model has 
been built. H.Okuda

• Collecting Data under the multiplatform 
experimental environment.
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(3) Visual Behavior Analysis( ) y
• Building a measure of the coherence between 

h i l b h i d h d dthe visual behavior and the expected danger 
for detecting driver’s distraction.

M HirayamaM.Hirayama
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(4) Robustness of Driver Model( )
• Nonparametric Bayesian approach can 

ff ti l d id th ti l b feffectively decide the optimal number of 
mixture components of GMM driver model 

dl f d i i it tiregardless of driving situation. Pongtep
Angkititrakul

H

α G

θ2θ1 θN…

DPM: 14 MixturesGMM: 16 Mixtures
(UBM-MAP adapted)

x2x1 xN

Dirichlet Process Mixture Model
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Other Projectsj
(1) Building the sensor signal corpus of mobile devices.
(2) M d li h l i i b h i(2) Modeling choral singing behavior.

Guide vocal pitch：V Musical note：USinger’s pitch

(3) B ildi b i ibili
vk uk

m

(3) Building a bottom-up scene visibility measure.
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Local visibility：HI Global visibility： Lo

Integration
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Field Tests
(1) Detecting fraud calls by combining keyword spotting 

and emotional speech recognition (with Fujitsu Coand emotional speech recognition. (with Fujitsu Co., 
Ltd.)

Building a signal model of the speech under OVER-TRUST.Building a signal model of the speech under OVER TRUST.

(2) Implementing an interactive automatic cruse control 
(ACC) which utilize both forward and backward ( )
assistance. (with DENSO Co., Ltd.) ( )
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kS

Spectral flatness
( )∏ kScharacterized by

normal overtrust

Power spectrum of LPC residual signal



Summaryy
• There is a ‘BIG DATA’ over the environment-

hi h i i i h hi lmachine-human interactions in the vehicular 
application fields.

• Signal processing techniques can build a 
computational methods of modeling andcomputational methods of modeling and 
controlling ‘MANNED-MACHINE’.

• OVER-TRUST is an interesting mismatch.
• There are still a lot of challenges for practicalThere are still a lot of challenges for practical 

applications.
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