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Abstract
To enhance readability and usability of speech recognition re-
sults, automatic punctuation is an essential process. In this pa-
per, we address automatic comma prediction based on condi-
tional random fields (CRF) using lexical, syntactic and pause
information. Since there is large disagreement in comma in-
sertion between humans, we model individual tendencies of
punctuation using annotations given by multiple annotators, and
combine these models by voting and interpolation frameworks.
Experimental evaluations on real lecture speech demonstrated
that the combination of individual punctuation models achieves
higher prediction accuracy for commas agreed by all annotators
and those given by individual annotators.
Index Terms: Automatic punctuation, lecture speech, condi-
tional random fields, multiple annotations

1. Introduction
Automatic speech recognition (ASR) research has recently
been focused on various spontaneous speech such as public
speeches [1], classroom lectures [2] and congressional meet-
ings [3]. ASR of these kinds of spontaneous speech is useful
for speech translation, captioning and documentation. To en-
sure readability of resulting captions and documents, ASR out-
put should be punctuated into proper units. Moreover, these
units are essential for succeeding language processing such as
machine translation, which assumes punctuated texts as inputs.
However, an ASR system usually produces a sequence of words
without any punctuation. For human reading and automated
systems, automatic punctuation is an important issue.

Many studies on automatic punctuation of speech tran-
scripts have mainly focused on periods, i.e., sentence bound-
ary detection, and it has been explored on broadcast news and
conversation tasks. Popular approaches to automatic punctua-
tion adopt machine learning frameworks such as maximum en-
tropy, support vector machines (SVM) and conditional random
fields (CRF), with prosodic, pause and linguistic information
[4]. We also proposed sentence boundary detection of Japanese
lectures using SVM with linguistic and pause information [5].
On the other hand, previous work on prediction of commas has
been limited [6, 7], and its accuracy is much lower than that for
periods. Compared to periods, there is much disagreement in
commas between humans, since insertion of commas is more
frequent and subjective. Commas given by a single annotator,
which were often used as references in previous studies, are not
always reliable, therefore we use different punctuation annota-
tions given by multiple annotators.

In this paper, we address automatic punctuation of Japanese
lecture speech using multiple punctuation annotations. First, we
analyze manual punctuation of lecture speech in terms of varia-

tions between annotators. Then, an automatic punctuator is de-
signed based on the CRF framework. Specifically, we train CRF
which independently model the tendency of punctuation of each
human annotator, then combine these models to make more reli-
able prediction. We train general and personalized punctuators,
and evaluate the performance over real lecture speech.

2. Corpus and annotations
For analysis of punctuation, we used lecture speech in “the Cor-
pus of Spontaneous Japanese” (CSJ) [8], which was a collection
of speech and transcripts of academic presentations and extem-
poraneous public speeches. We chose 70 presentations and 107
speeches for our analysis. The CSJ includes audio data, tran-
scripts and annotations such as pauses and disfluencies. Since
no punctuation marks were given to transcripts in the CSJ, we
conducted manual annotation of periods and commas by three
professional stenographers independently. As a result, three
punctuated transcripts were obtained for each of 177 lectures.
Note that simple edits, such as removal of fillers, substitution
of colloquial expressions and modification of end-of-sentence
expressions, were performed on the faithful transcripts in the
CSJ before punctuation, by other annotators. The total size of
177 lectures after the editing was 365,305 words. The three
annotators did not listen to the corresponding speech, i.e., the
annotation was made by referring to the transcripts only.

The transcripts are automatically split into lexical units by
a parser, as there is no word boundaries in Japanese texts. In
Japanese, a sentence can be broken into several syntactic units
called bunsetsu, each of which is comprised of one or a few
words, and used as a basic unit of dependency analysis and
parsing. Basically, commas are put at bunsetsu boundaries,
however, not all bunsetsu units can have commas. Typical pur-
poses of commas in Japanese texts are (1) sign of an end of a
phrase, (2) listing up several elements, like “A, B, C,” (3) clarifi-
cation of syntactic dependency on lexical elements (i.e., which
bunsetsu modifies what), and (4) segmentation of a word se-
quence to make it easy to read, as Japanese texts do not have
any spaces between words. Purposes (1), (2) and (3) are sim-
ilar to those in other languages such as English, while (4) is
peculiar to Japanese. Commas for (3) and (4) are subjective
and these can be inserted in various ways, however, too many
commas are not preferred. Consequently, bunsetsu units which
modify the next unit tend to have no commas.

3. Analysis of punctuation marks
In this section, we investigate differences of punctuations given
by multiple annotators. We also investigate how linguistic and
pause information is associated with commas.
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Table 1: Numbers of punctuation marks by annotators

Annotator Commas Periods

A 29,393 16,958
B 23,371 16,972
C 19,854 16,969

6,015

15,027

2,678
5,673

816
1,855 1,333

A

B C

Figure 1: Overlaps of commas given by three annotators

3.1. Comparison of punctuation marks between annotators

First, we compared the numbers of commas and periods in the
punctuated transcripts and overlaps between the annotators. Ta-
ble 1 lists the numbers of commas and periods given by an-
notators A, B and C. The numbers of periods are almost same
among three annotators. Actually, 97% of periods are common
to all annotators. In contrast, the numbers of commas are signif-
icantly different between the annotators. Annotator C gave only
two-thirds of commas given by annotator A. Figure 1 shows
overlaps of commas by the three annotators. The number of
commas jointly given by all annotators is 15,027, which is 51%,
64% and 76% of commas given by A, B and C, respectively. On
the other hand, 20% of A’s (6,015), 8% of B’s (1,855) and 7%
of C’s (1,333) commas are inserted only by a single annotator.
The statistics suggest that the number and position of commas
are affected by human subjects, even if they are professional
stenographers.

3.2. Typical linguistic expressions around commas

It is hypothesized that people have their own punctuation points,
especially for commas, when writing sentences. To verify indi-
vidual tendencies of comma insertion, we investigate linguistic
expressions which appear with commas. By counting words fol-
lowed by/following commas inserted only by a single annotator
(i.e., white areas in Figure 1), we found typical expressions to
each annotator. For example, annotator A often inserted com-
mas after postpositional particles, such as wa and ga, which
indicate grammatical cases. In contrast, annotators B and C in-
serted many commas after conjunctive words, however, specific
words were different; annotator B gave commas after soshite
(then), tsumari (that is) and sunawachi (that is), while annota-
tor C gave after aruiwa (or/possibly) and sorekara (then).

3.3. Correlation with pauses

Pauses are often used as key features for automatic punctuation
of speech recognition results. Although annotators did not listen

2,000

4,000

6,000

8,000

10,000

12,000

14,000

#
O
c
c
u
r
r
e
n
c
e
s

w/o punctuation

w/ comma

w/ period

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0
.
2
-
0
.
3

0
.
3
-
0
.
4

0
.
4
-
0
.
5

0
.
5
-
0
.
6

0
.
6
-
0
.
7

0
.
7
-
0
.
8

0
.
8
-
0
.
9

0
.
9
-
1
.
0

1
.
0
-
1
.
1

1
.
1
-
1
.
2

1
.
2
-
1
.
3

1
.
3
-
1
.
4

1
.
4
-
1
.
5

#
O
c
c
u
r
r
e
n
c
e
s

Duration of pause (sec.)

w/o punctuation

w/ comma

w/ period

Figure 2: Correlation of pauses and punctuation marks

to the lecture speech, i.e., they did not refer to pause informa-
tion for punctuation, we extract pause information from the CSJ
and investigate co-occurrence with punctuation marks. Figure
2 shows a histogram of duration of pauses detected in the lec-
ture speech, together with counts of periods and commas given
at the pauses. In the CSJ, pauses were measured by hand, but
pauses shorter than 0.2 seconds were not annotated, thus not
included in Figure 2. Here we used transcripts punctuated by
annotator A to calculate statistics in Figure 2. The distribution
of pauses with punctuation marks is almost common among the
three annotators. Pauses longer than 1.0 second are likely to
be followed by periods or commas, but they do not account for
majority of punctuations. On the other hand, the majority asso-
ciated with commas are shorter than 0.5 seconds, but 47%–55%
of them are not associated with any punctuation marks. The ra-
tio is almost constant regardless of the pause duration, however,
it is apparently higher than that in the case of no pauses. Hence,
the occurrence of pauses helps comma prediction, while the du-
ration information of pauses is not expected to do so.

4. Automatic punctuation method
4.1. CRF-based modeling

Based on the analysis described above, we design an automatic
punctuation method. As a modeling framework, conditional
random fields (CRF) are adopted. We used CRF++1 to train and
test models for punctuation. Features of CRF were word surface
form, part-of-speech (POS) tag and boundaries of bunsetsu. We
also used local syntactic dependency which was defined only at
adjacent pairs of bunsetsu units, because a bunsetsu unit which
has such dependency is strongly associated with the next, and
thus no commas are usually put there. Estimation of local de-
pendency is expected to be robust, while the long dependency
structure is often hard to identify. All of these lexical and syn-
tactic features were automatically extracted by a Japanese mor-
phological analyzer and a parser. As for pause features, pauses
longer than 0.2 seconds were extracted and used. We did not
use the duration information of pauses, because the correlation
of the pause duration and commas is not strong as shown in
Figure 2. CRF used these features of previous and following
three words, as well as those of the current input word. In the

1http://crfpp.sourceforge.net
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Table 2: Comparison of various combinations of features for automatic punctuation

Features used
Periods Commas

Recall Precision F-measure Recall Precision F-measure

Word 0.972 0.969 0.971 0.611 0.729 0.665
Word+bunsetsu boundary 0.975 0.974 0.975 0.647 0.764 0.700
Word+bunsetsu+dependency 0.978 0.983 0.981 0.698 0.768 0.731
Word+POS 0.974 0.973 0.974 0.624 0.764 0.687
Word+POS+bunsetsu 0.976 0.973 0.975 0.679 0.768 0.721
Word+POS+bunsetsu+dependency 0.979 0.983 0.981 0.713 0.774 0.742
Word+POS+bunsetsu+dependency+pause 0.975 0.984 0.980 0.734 0.784 0.758

experiments described below, every evaluation metric was av-
eraged over results of 10-fold cross validation on 177 lectures
mentioned in Section 2, unless otherwise indicated.

4.2. Effects of various features

First, we evaluated the effect of each feature, by changing com-
bination of features. In this experiment, we conducted training
and evaluation using periods and commas given jointly by at
least two annotators. Table 2 shows recall rate, precision rate
and F-measure of punctuation by various CRF models trained
with different sets of features. For periods, high performance
was achieved even with the single word feature. This is because
the evaluation was done over manually edited transcripts, where
typical end-of-sentence expressions can be easily detected. On
the other hand, there were no dominant features for comma pre-
diction. All features synergistically improved performance of
comma prediction, as each feature represented different aspects
of comma insertion.

4.3. Prediction of general commas

Next, we evaluated the performance of the CRF-based comma
prediction over several punctuation labels. As features for ex-
periments hereafter, all features used in the previous experiment
were adopted. We prepared labels of six types. As general punc-
tuation labels, “3,” “2+” and “1+” were defined based on the
commonness of punctuation marks among the three annotators.
The label “3” was made from punctuation marks given by all of
the three annotators, “2+” given by at least two annotators, and
“1+” given by at least one annotator. These labels are chosen
based on multiple human subjects and hence considered to be
general. In contrast, punctuation labels given by each annotator
were used as personalized labels “A,” “B” and “C.”

For prediction of general commas (i.e., general labels), we
directly trained CRF models using the respective general la-
bels. Furthermore, we trained personalized models using “A,”
“B” and “C” labels, then conducted voting using the results of
these models. Here, we performed three types of voting; “Any”
(punctuation adopted if at least one model votes), “Majority”
(at least two models vote) and “Consensus” (all three models
vote). These should be compared with the direct modeling of
“1+,” “2+” and “3,” respectively. In other words, voting was
done for training labels in the direct modeling, while voting by
personalized models were done at the time of prediction.

Table 3 shows the results of comma prediction by the direct
modeling and voting by personalized models. In the case of
“3” test labels, where commas were common to all annotators,
F-measure was 0.620 by the “3” model. On the other hand, in
case of “1+” test labels where every possible point of commas

Table 3: Results of comma insertion for general labels

Direct modeling

Test label 1+ 2+ 3

Training label 1+ 2+ 3
Recall 0.814 0.734 0.559

Precision 0.830 0.784 0.695
F-measure 0.822 0.758 0.620

Voting by A,B and C models

Test label 1+ 2+ 3

Training label A,B,C A,B,C A,B,C
Voting type Any Majority Consensus

Recall 0.774 0.729 0.633
Precision 0.849 0.786 0.652

F-measure 0.810 0.756 0.642

1+: Labels given by at least one annotator,
2+: Labels given by at least two annotators,

3: Labels given by all annotators,
A/B/C: Labels given by each annotator

should be predicted, F-measure was 0.822 by the “1+” model.
These results suggest that prediction of possible points is rela-
tively easier than common (i.e., essential) commas. As for vot-
ing results, “Consensus” voting achieved higher F-measure than
that of the “3” model. “Majority” voting was almost compara-
ble to the “2+” model, and “Any” voting did not improve the
performance. This result suggests that combination of multi-
ple models trained independently by different labels is effective
for prediction of commas based on a certain criterion, while the
direct modeling better models arbitrary commas.

4.4. Prediction of personalized commas

Next, we investigated personalized modeling of commas. For
each of personalized labels “A,” “B” and “C,” personalized
models are tested. We also tested the “1+” model, which re-
alizes high recall and precision rates for possible commas, as
shown in Table 3. Moreover, we introduced interpolation of the
personalized and the “1+” models. In the CRF framework, a
probability is calculated for every prediction result, and clas-
sification is performed based on the probabilities, i.e., the re-
sult which has the largest probability is selected as an output.
Here, the personalized and the “1+” models give probabilities
Ppersonal(C|X) and P1+(C|X), respectively, to a classifica-
tion output C for an input feature vector X . Then, we interpo-
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Table 4: Results of comma insertion for personalized labels

Test label A B C

Personalized Recall 0.772 0.712 0.617
(A/B/C) model Precision 0.799 0.776 0.711

only F-measure 0.785 0.743 0.661

1+ model
Recall 0.832 0.877 0.859

only
Precision 0.758 0.635 0.529
F-measure 0.793 0.737 0.655

Weighted Recall 0.803 0.793 0.741
interpolation Precision 0.786 0.725 0.644

(A/B/C & 1+) F-measure 0.795 0.758 0.689

For A, B, C and 1+, refer to Table 3.

Table 5: Results of comma insertion on automatic transcripts

Test label 1+ 2+ 3

Manual
Recall 0.821 0.735 0.525

transcripts
Precision 0.827 0.775 0.715
F-measure 0.824 0.754 0.605

Automatic
Recall 0.601 0.493 0.315

transcripts
Precision 0.494 0.435 0.354
F-measure 0.542 0.462 0.334

For 1+, 2+ and 3, refer to Table 3.

late these two probabilities to make a final decision:

P (C|X) = λPpersonal(C|X) + (1− λ)P1+(C|X). (1)

The interpolation weight λ was set as 0.6 in this experiment.
Here, the best value was chosen a posteriori.

Table 4 shows the results of comma prediction for annota-
tor A’s, B’s and C’s labels by the corresponding personalized
models, the general “1+” model and the weighted interpolation
of these models. The interpolated model achieved the highest
performance among the three types of models. The combina-
tion with other annotator’s information is useful for enhancing
the personalized model.

4.5. Evaluation on automatic transcripts

Finally, we tested the prediction model on ASR results of lec-
tures. In this experiment, we used eight lectures as a test set.
The number of words in this test set is 17,925, and the word
error rate is 17.1%.

Table 5 lists the results for automatic transcripts together
with corresponding manual transcripts, in case of “1+,” “2+”
and “3” labels used for both training and testing. Compared to
the results over manual transcripts, the performance was signif-
icantly lower for automatic transcripts. One reason for degra-
dation is ASR errors, but the other major reason is the editing
process conducted on the transcripts, as described in Section
2. Here we applied simple rule-based transformation of end-of-
utterance expressions to the ASR results, which was not suffi-
cient for automatic punctuation. We need to improve this trans-
formation to realize higher punctuation performance.

5. Conclusions
We have addressed automatic punctuation of lecture speech us-
ing CRF with lexical, pause and syntactic information. We first
confirmed different tendencies in comma insertion between pro-
fessional annotators. Therefore, we adopted an approach to
make personalized models and combine them. Using differ-
ent punctuation labels given by multiple annotators, punctuation
models dedicated to respective annotators are trained. By com-
bining these personalized models, the performance of comma
prediction was improved for both general and personalized cri-
teria.

Acknowledgment: This work was supported by JST CREST
and JSPS Grant-in-Aid for Scientific Research.

6. References
[1] C. Alberti, M. Bacchiani, A. Bezman, C. Chelba, A. Drofa,

H. Liao, P. Moreno, T. Power, A. Sahuguet, M. Shugrina,
and O. Siohan, “An Audio Indexing System for Election
Video Material,” in Proc. ICASSP, 2009, pp. 4873–4876.

[2] J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and
R. Barzilay, “Recent Progress in the MIT Spoken Lecture
Processing Project,” in Proc. Interspeech, 2007, pp. 2553–
2556.

[3] Y. Akita, M. Mimura, G. Neubig, and T.Kawahara, “Semi-
automated Update of Automatic Transcription System for
the Japanese National Congress,” in Proc. Interspeech,
2010, pp. 338–341.

[4] Y. Liu, E. Shriberg, A. Stolcke, B. Peskin, J. Ang,
D. Hillard, M. Ostendorf, M. Tomalin, P. Woodland, and
M. Harper, “Structural Metadata Research in the EARS
Program,” in Proc. ICASSP, vol. 5, 2005, pp. 957–960.

[5] Y. Akita, M. Saikou, H. Nanjo, and T. Kawahara, “Sen-
tence Boundary Detection of Spontaneous Japanese Using
Statistical Language Model and Support Vector Machines,”
in Proc. Interspeech, 2006, pp. 1033–1036.

[6] F. Batista, D. Caseiro, N. Mamede, and I. Trancoso, “Re-
covering Punctuation Marks for Automatic Speech Recog-
nition,” in Proc. Interspeech, 2007, pp. 2153–2156.

[7] B. Favre, D. Hakkani-Tur, and E. Shriberg, “Syntactically-
informed Models for Comma Prediction,” in Proc. ICASSP,
2009, pp. 4697–4700.

[8] S. Furui, K. Maekawa, and H. Isahara, “Toward the Real-
ization of Spontaneous Speech Recognition —Introduction
of a Japanese Priority Program and Preliminary Results—,”
in Proc. ICSLP, 2000, pp. 518–521.

2892


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Tatsuya Kawahara
	----------

