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Abstract

We have proposed a method for real-time, unsupervised voice
activity detection (VAD). In this paper, problems of feature se-
lection and classification scheme are addressed. The feature
is based on High Order Statistics (HOS) to discriminate close
and far-field talk, enhanced by a feature derived from the nor-
malized autocorrelation. Comparative effectiveness on several
HOS is shown. The classification is done in real-time with a
recursive, online EM algorithm. The algorithm is evaluated on
the CENSREC-1-C database, which is used for VAD evaluation
for automatic speech recognition (ASR) [1], and the proposed
method is confirmed to significantly outperform the baseline
energy-based method.

Index Terms: Voice activity detection, online EM, high order
statistics

1. Introduction
VAD can be simply described as detecting speech boundaries
from audio signal. It is used in most speech processing tasks
as a pre-processing step. For example, the GSM 729 standard
defines two VAD modules used for variable bit speech coding;
VAD robust to noise is a critical step for ASR in noisy envi-
ronments. Recently, it has also an important role in the task
of multi-modal human-to-human interactions, such as meetings
[2]. In the latter situations, the problem is complicated by the
fact that in the case of natural speech, it is difficult to make
assumptions, generally made for VAD in ASR contexts, that
most of the signal contains speech. This means the classification
scheme has to somewhat adapt to sparsity of the speech. Also,
as several people are involved in those situations, it is necessary
to be able to discriminate between speakers. One solution for
this problem is to use microphone arrays, for example in [3]. If
using wearable microphones is possible, the problem is reduced
to find a feature good enough to discriminate between close-talk
and far-field speech: this is the approach we have taken. Note
that even with close-talking microphones, it is not easy to elim-
inate background speech with a simple energy-based method in
sparsely uttered situations as in meetings.

We have already presented the basic concept of the ap-
proach and a preliminary test with an in-house data in [4]; the
global scheme is depicted in Figure 1. In this paper, we give
thorough description of the method and investigate how the high
order statistics of order 4 (a.k.a. kurtosis) performs better than
statistics of order 3 (a.k.a. skewness) : this is developed in sec-
tion 2. The on-line classification scheme is explained in section
3. Finally, the algorithm is evaluated on a publicly available
database designed for VAD evaluation in section 4.

Figure 1: Overview of proposed method

2. Proposed feature
2.1. Kurtosis as discriminative feature against far-field
speech

Many features have been suggested for VAD: energy, autocor-
relation, cepstrum peaks ([5]) and MFCC ([6]). The idea is that
the underlying distribution of the feature is different for speech
and non-speech parts, and that those differences can be easily
detected. We are also interested in a feature which is robust
against far-field speech. Also, for real-time speech detection, as
noted for example in [7], normalization of the feature is critical
to avoid classification errors. We focus on normalized features,
that is features which are independent on the signal energy.

To discriminate against far-field speech, we use several
properties of our setting (close microphone); first, obviously,
because energy received by the microphone is dependent on
the distance between the source and the microphone, far-field
speech and close-talk speech have different energy; but more
interestingly, close-talk microphones being directional (that is
their sensitivity is not uniform across all directions), they have a
so called boost-effect. This boost effect increases the amplitude
in the low spectrum for audio sources which are really close
to the microphone; all directive microphones have this effect,
which is often used by sound engineers for music recording.
This effect is also sometimes called proximity effect.

Figure 2 shows an example of this boost effect on the LPC
residual for close-talk and far-field speech. In a simple source-
filter model of speech production, the LPC residual can be seen
as the glottal excitation; as such, the impulse train produced by
the vibration of the vocal cords can be observed for periodic
speech frames. In both cases, the pulses corresponding to the
opening of the vocal cords can be seen as well as their period-
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Figure 2: LPC residual of close-talk speech (top) and far-field
speech (above)

icity, but because of the boost effect, the pulses have a clearly
higher energy amplitude in close-talking speech. On the con-
trary, for far-field speech, those pulses are weaker; also, because
of environmental noises, the rest of the signal is more likely to
take higher values compared to close-talk.

If we consider the distribution of the amplitude of the LPC
residual for close-talk speech, most samples will be around 0 in-
side the range [−σ, σ], where σ is the standard deviation. On the
contrary, for far field speech, more samples will have high val-
ues. In other words, because of the proximity effect, pulse am-
plitudes are emphasized, and for far-field speech, they are com-
paratively de-emphasized. Statistically, the distribution of the
LPC residual in close-talk has a high peak around the mean, and
a fat tail (relatively high number of extreme values), whereas
the distribution for far-field speech has a fatter midrange, that is
many values around σ. From this point of view, discriminating
between close-talk and far-field speech can be done by discrim-
inating fat-tailed distributed LPC residual against fat-midrange
distributed LPC residuals.

To measure such a difference, we use High Order Statistics
(HOS) derived as cumulants of the LPC residual. Cumulants
of a random signal X are defined by the cumulant generating
function, defined as the following:

log Φ(t) = log E[etX ] (1)

=

∞X

n=0

κn
tn

n!

The cumulant generating function is the log of the moment gen-
erating function, and cumulants of order n, κn, are to the cumu-
lant generating function what the moments of order n are to the
moment generating function. Kurtosis is defined as the cumu-
lant of order 4. Another commonly special case is the cumulant
of order 3, called skewness. An explicit relationship between
skewness, kurtosis and the number of harmonics in the LPC
residual was given in [8]. Kurtosis has high values for random
signals which are heavy tailed, and has low values for random
signals which have values in the midrange of their distribution
(generally located around σ and −σ for centered signals); see
for example [9] for a proof.

Table 1: Comparison between kurtosis and skewness

FAR FRR GER

Proposed algorithm 7.8 % 13.0 % 9.5 %
(kurtosis)

Proposed algorithm 8.2 % 14.6 % 10.6 %
(skewness)

2.2. Comparison between kurtosis and skewness

We use the normalized version of the excess kurtosis; excess
kurtosis is defined such that the kurtosis of a normally dis-
tributed signal is 0, and the normalization factor is equal to
1/σ4. As an example, for the signals represented on Figure
2, the kurtosis is 15.4 for the close-talk case (top), and 0.4 for
the fair-field case (bottom). If we remove a few samples cor-
responding to the pulses in the top LPC residual, the kurtosis
quickly drops to small values.

We experimentally compared the difference between kurto-
sis and skewness. We ran the VAD method with the exact same
algorithm except that kurtosis was replaced by skewness (again,
normalized). The test set is the in-house data used in [4], which
consists of 45-minute conversation by a number of people wear-
ing head-set microphones. The results are given in Table 1;
FAR is the False Alarm Rate (ratio of non-speech detected as
speech), FRR the False Rejection Rate (ratio of speech frames
not classified as speech) and GER, the Global Error Rate, (ratio
of all misclassified frames against the total number of frames).
In this result, kurtosis is confirmed to be more effective than
skewness.

2.3. Enhancing kurtosis

As we already noted in [4], and as noted in [8], kurtosis alone
cannot be used, because it is really sensitive to some kind of
noises, particularly transient noises, that is noises which are
well localized in time and have really high energy (e.g. noises
corresponding to physical contact to the microphone). To com-
pensate those problems, we combine the kurtosis with a feature
robust against transient noises: the second main peak of nor-
malized autocorrelation (the first peak, at lag 0, is always 1 by
definition of normalized autocorrelation). We compute the auto-
correlation of the LPC residual. The LPC residual is supposed
to contain most of the pitch information, and this makes the
peaks sharper. Thus, we combine it with log kurtosis to make
its behaviour more Gaussian:

f = m · log(1 + κ) (2)

where m is the amplitude of the main peak of the normalized
autocorrelation and κ the log-kurtosis. An example on Figure 3
shows that the enhanced kurtosis has lower values than kurtosis
alone for transient noises (such as the parts around second 10).

3. Classification scheme
3.1. Online EM

Some VAD algorithms rely on state-machine like scheme to
classify speech and non-speech states; for unsupervised VAD
algorithm, it is the most straightforward way for classification
(for example [10]). Here, we propose a scheme of unsuper-
vised classification, but without relying directly on a threshold,
which would require noise-level estimation. If we suppose that
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Figure 3: Audio example with spectrogram (top), comparing
energy (middle top) to log-kurtosis (middle bottom) and en-
hanced kurtosis (bottom). The red boxes correspond to speech
sections.

each class (speech and non-speech) has a probabilistic distri-
bution, an optimal threshold can be determined in a Bayesian
context as the class which maximizes p(class|x) where x is the
observed data (e.g. enhanced cumulant values); this is a maxi-
mum a posteriori classification (MAP). The problem of course
is to be able to compute p(class|x).

In a parametric context, p(x|class) is modeled as a para-
metric density p(.; θ), and we try to estimate the parameters θ.
Expectation Maximization algorithm [11] is a well known algo-
rithm to estimate parametric models with so called hidden fea-
ture, also called latent variables; in our case, the latent variable
is the class membership. If we choose a Gaussian distribution
for p(.; θ), the model estimated by the EM algorithm is a simple
binary mixture of Gaussian, where each component of the mix-
ture represents one class (one for speech, one for non speech).
The EM algorithm is an iterative algorithm, and each iteration
i requires two steps, an Expectation step, where the latent vari-
able distribution is estimated using the parameters of the former
iteration θi−1, and a Maximization step, where the sufficient
statistics of the model are estimated from the latent variable dis-
tribution and used to update the parameters of the model (C is
the random variable representing the class membership):

1. E step: estimate ζi
c � p(C = c|x, θi−1)

2. M step:

(a) M 1: estimate sufficient statistics SSi from ζi
c

(b) M 2: estimate θi from sufficient statistics SSi

For real-time classification, this cannot be used directly, be-
cause both E step and M step (part1) requires the whole data set.
As noted in [12], there have been several approaches to solve
this problem. One method, described in [13], consists in recur-
sive approximation of the model’s parameters, that is for a new
observation xn,

θn = θn−1 + γnIf
−1(θn−1)U(xn; θn−1) (3)

where γ is a non-decreasing scalar sequence, If
−1(θn−1)

the Fisher Information Matrix of one complete observa-
tion (xn, cn), and U a score function defined by U �
∇θ log p(x; θ). A more EM-like approach, where both E and
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Figure 4: Spectrogram of audio segment (top), the enhanced
kurtosis (middle) and means of components estimated by online
EM (red for speech, green for noise)

M steps are still used, has been proposed more recently ([14],
[12]); the E step is replaced by a stochastic approximation, and
the M step is kept the same:

SSn = SSn−1 + γn(SS(xn; θn−1) − SSn−1) (4)

The conditions on the sequence γ such that the above proce-
dure converges are given in ([14], [12]); a more complete review
of the theory behind this kind of procedures is given in [15]. We
used the latter approach in our implementation. To give an idea
about the online adaption of the EM, we plot in Figure 4 the
means of each component; we can observe that the state of the
model effectively adapts itself to the signal after a few frames.

We compared the effectiveness of the online EM to the stan-
dard EM algorithm. Both used the enhanced kurtosis as a fea-
ture. They were tested on the test-set as in section 2.2. Although
online EM is slighthly worse than offline for FRR (13.0 % vs
12.0 %), they got comparable FAR (7.8% vs 8.0 %) and the
same GER (9.5 %). Online EM is found to give similar results
to the offline EM.

4. Evaluation
We applied our method to the CENSREC-1 database for more
comprehensive evaluation. This database consists of noisy con-
tinuous digit utterances in Japanese; the recordings were done
in two kinds of noisy environments of street and restaurant, and
high (SNR > 10 dB) and low SNR (-5 ≤ SNR ≤ 10 dB). For
each of these situations, close and remote recordings were avail-
able [1]; we used a speech frame of 32 ms with an overlap of 16
ms (eg 256 samples at a sampling rate of 8 khz, 50 % overlap).

First, the results for close recordings are given in Table 2;
each case has a total length of 30 minutes approximately. From
Table 2, it is observed that the results are much the same for
low/high SNR, both for restaurant and street environments in
the close recording case. The noise type seems more signifi-
cant than the SNR condition. For comparison purposes, we also
compare the proposed algorithm with an algorithm which still
uses online EM for classification, but uses energy instead of the
enhanced kurtosis as a feature. The results averaged over dif-
ferent SNR and two types of environments are given in Table 3.
This confirms the effectiveness of the proposed algorithm.
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Table 2: Frame error rates for the proposed algorithm on close
recordings of CENSREC-1-C

Close Case FAR FRR GER

Restaurant, high SNR 10.3 % 6.9 % 9.1 %

Restaurant, low SNR 9.9 % 8.5 % 9.3 %

Street, high SNR 7.2 % 13.8 % 9.7 %

Street, low SNR 8.7 % 13.4 % 10.7 %

Table 3: Frame error rates for the proposed algorithm compared
to energy-based method

Close Case FAR FRR GER

Proposed algorithm 9.0 % 10.6 % 9.8 %

Energy-based 11.2 % 26.0 % 16.7 %

Finally, we show a comparison with the baseline along with
its ROC for remote recordings, although our method is designed
for close-talking. The ROC is computed for the average be-
tween low and high SNR, and is plotted in Figure 5. The base-
line uses a simple energy based algorithm [1]. It should be noted
that this baseline algorithm is an offline algorithm, and the clas-
sification is done a posteriori knowing the whole signal. This
gives the baseline an advantage, however, our algorithm outper-
forms the baseline.

5. Conclusion
An unsupervised VAD algorithm has been presented and eval-
uated on a publicly available database. The proposed method
outperforms the baseline by a significant margin. As the feature
is not computationaly intensive and the classification does not
have a high latency, the method is suitable for real-time VAD.
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