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ABSTRACT 

 

Articulatory feedback is effective for computer-assisted 

pronunciation training (CAPT) systems. This paper 

investigates efficient model learning methods for providing 

articulatory information to language learners. We first 

propose an articulatory attribute modeling method based on 

a multi-label learning scheme. Then, the models are further 

enhanced with a simple and effective training label 

correction method. These proposed methods are evaluated in 

three tasks: native attribute recognition, pronunciation error 

detection of non-native speech, and non-native speech 

recognition. Experimental results show that proposed 

methods significantly improve the conventional deep neural 

network (DNN) based articulatory models. 

 

 

Index Terms—Computer-assisted pronunciation training 

(CAPT), pronunciation error detection, articulation 

modeling, multi-label DNN, attribute label correction 

 

1. INTRODUCTION 

 

Over the last decades, CAPT systems based on statistical 

modeling techniques have made considerable progress [1-5]. 

There are generally two kinds of pronunciation feedback 

provided in these systems. One is to show learners 

pronunciation scores [6-9], and the other detects individual 

errors such as phone substitution errors [10-14]. A typical 

scenario is: “You made an r-l substitution error.” when a 

user pronounces the word “red” as “led”. Instead of 

providing phone substitution feedback, giving the feedback 

directly related with articulation is more attractive in recent 

years [15-17]. Facing the same pronunciation error 

described above, learners could be instructed with “Try to 

retract your tongue and make the tip between the alveolar 

ridge and the hard palate”. Articulatory information has 

been demonstrated more helpful in many related areas, such 

as speech comprehension improvement [18], speech therapy 

[19] and pronunciation perceptual training [20]. 

We aim at providing such articulation related feedback 

and have investigated modeling the articulatory attributes 

through transfer-learning methods [21]. In this work, we 

introduce two improvements. Firstly, we take care of the 

interaction effects of different kinds of articulation attributes 

of the same phone with a multi-label training scheme. A 

DNN model with multiple outputs is designed, in which the 

hidden layer can be regarded as a shared internal feature 

representation of vocal tract configuration. Another benefit 

of this learning method is that it can largely reduce the 

model training time compared with the conventional 

attribute modeling methods. In addition, the models are 

further improved with a label correction procedure based on 

the consistency of the articulation attribute labels. 

The rest of this paper is organized as follows: 

Conventional articulatory attribute modeling methods are 

firstly described in Section 2. All details of proposed 

training methods are explained in Section 3 and 4. Section 5, 

6 and 7 respectively report the performance of these 

learning methods in the native attribute recognition task, the 

non-native pronunciation error detection task, and non-

native speech recognition task. Conclusions are in the final 

section. 

 

2. ARTICULATORY MODELING 

 

Articulation means the movement of the tongue, lips, and 

other organs to generate speech sounds. Generally, place of 

articulation and manner of articulation are used to describe 

the attributes of consonant sounds, while vowels are 

described with three-dimensional features: horizontal 

dimension (tongue backness), vertical dimension (tongue 

height), and lip shape (roundedness). We have investigated 

articulatory models to recognize these attributes.  

 

2.1. Articulatory attributes transcription 

 

For the training of the articulatory attributes with supervised 

statistical models, high-quality articulatory datasets are 

needed, which contain accurate articulatory position 

information along with speech recordings. Various methods 

are used to generate a speaker’s articulatory attributes, 

including X-rays [22], electromagnetic articulography 

(EMA) [23], magnetic resonance imaging (MRI) [24] and 

ultrasounds [25]. However, all of the above direct 

measurements have their own disadvantages [26]. Moreover, 

it is not easy to obtain such dataset in a large scale. 

Therefore, the attribute transcriptions in present work are 
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derived from the phone transcription according to the 

phone-to-attribute mapping rules, which is a practical option 

adopted by many researchers [27-29]. From the example in 

Fig. 1, we can see the mapping relation between the phone 

class and the attribute class is many-to-many (phone /M/ has 

two attributes nasal and bilabial while both vowels /IH/ and 

/AX/ are mapped to the unrounded attribute). As a result, we 

prepare four kinds of articulatory transcriptions (manner, 

place-roundedness, place-backness and place-height) to 

represent all attributes. In each kind of transcription, the 

attributes are disjoint to each other so that it can be used to 

train a DNN model.  

 

 
Fig. 1.   Converting phone labels to articulatory labels. 

 

2.2. DNN based articulatory attribute modeling using 

phone-to-attribute transcription 

 

Following the great success of DNN based acoustic 

modeling, articulatory attribute modeling with DNN has 

been investigated in recent years. According to the above-

defined phone-to-attribute mapping, researchers usually 

train a bank of DNNs separately [27] [29]. The number of 

models depends on the attribute classes. In our previous 

work, we trained four DNNs in which each DNN was used 

to represent one-kind attribute. The co-articulation effects 

can be partially considered with context-dependent tri-

attribute units. Similar to tri-phones used in ASR, labels for 

tri-manners and tri-places are generated by taking into 

account the labels of neighboring attributes. However, it 

cannot take into account the interaction effects among 

different attribute categories. For example, during the 

training procedure of tri-manners, only the temporal effect 

of articulation manner is modeled.  In other words, 

information contained in the placement of articulation is not 

used during this kind of isolated training procedure. 

 

3. ARTICULATORY ATTRIBUTE MODELING 

WITH MULTI-LABEL LEARNING  

 

Based on the discussion above, we propose a new training 

method to the attribute modeling, which considers all the 

interaction effects in a unified objective function. Fig. 2 

illustrates an overview of multi-label learning based on 

DNN, which we refer as multi-label DNN (ML-DNN). All 

the isolated DNNs (four in our work) are merged into a 

single ML-DNN. The objective function of this multi-label 

learning is a summation of four cross entropy loss: 

𝐿𝑜𝑠𝑠𝑚𝑡𝑙 = 𝐶𝐸𝑚𝑎𝑛 + 𝐶𝐸𝑝𝑙−𝑏𝑘 + 𝐶𝐸𝑝𝑙−ℎ𝑡 + 𝐶𝐸𝑝𝑙−𝑟𝑑 

This architecture shares parameters and updates them with 

multiple complementary labels. Note that except for more 

output nodes, the number of parameters in this learning 

scheme is same as that of isolated DNNs. Therefore, the 

training time would be roughly reduced by a factor of 𝑁, 

where 𝑁 is the number of attribute categories.  

 
Fig. 2.   Articulatory attribute modeling with ML-DNN. 

 
4. CORRECTING TRAINING LABELS WITH 

VOTING PROCESS  

 

Before training the DNN articulatory models, we usually 

generate the frame level training labels from the forced 

alignment process of a seed model. These generated labels 

may not be accurate enough, but all of them are used as 

ground-truth labels in the DNN training process. The 

different kinds of labels should be mapped to the same 

phone based on the linguistic mapping rules mentioned in 

Section 2.1. Taking the sentence in Fig. 1 for an example, if 

a speech frame belongs to the phone /M/, its attribute labels 

after forced alignment should get mapped to the nasal 

attribute in manner transcription (1) and the bilabial attribute 

in the placement transcriptions (2-4).   

Motivated by the above discussion and the multi-label 

learning scheme, we propose a method to automatically 

correct noisy training labels through voting. Initially, four 

independent models are trained with the sentence level 

attribute transcription. The alignment outputs from these 

models are then sent to a correction module, which 

reconciles differences among these labels based on a voting 

scheme. The simple majority voting approach is adopted in 

present work. Since there are totally four attribute categories 

used in current classification, a label may only be changed 

when the other three attribute labels mapped to a same 

phone. The label correction procedure for a speech frame 

labeled “Unvoiced-fricative  Alveolar  Alveolar  Unrounded” 

is shown in Fig. 3. These labels will be processed along the 

direction that is represented by red dashed arrows. After 

correction, the “Unrounded” label will be changed to its 

right neighboring attribute “Alveolar”. 
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The procedure is iterated. It is not guaranteed to 

convergence in theory, but the number of corrections is 

decreased empirically. The procedure will be terminated 

when the proportion of corrected labels is smaller than a 

threshold (1e-5 in this work). Finally, the module will 

output newly corrected transcriptions for the model training. 

We use only attribute models, not phone models, because 

the recognition performance of phone models, especially in 

non-native speech, is much lower than that of attribute 

recognition. 

 
Fig. 3.   Majority voting based training labels correction. 

 

5. NATIVE ATTRIBUTE RECOGNITION 

EXPERIMENT 

 

5.1. Data set and model configuration 

 

The language learners in this study are Japanese students 

who learn English. As a consequence, native English and 

Japanese English are considered in this paper. We first 

evaluate our proposed methods on a native English corpus 

in this section. The corpus used to train the articulatory 

models is Wall Street Journal (WSJ) database [30], which is 

a commonly used database for English large-vocabulary 

continuous speech recognition research. Sixty-four hour 

speech data from the SI-284 training data (WSJ0 and WSJ1) 

were selected after filtering noisy utterances. We conduct 

the evaluation on both Nov’92 and Nov’93 testing data sets 

of WSJ. 

All methods used the following DNN configuration, 

which is optimized on the standard development data set 

(Dev’93) of WSJ.  The acoustic feature consists of 40-

dimensional log Mel-scale filterbank outputs plus first and 

second temporal derivatives. The input to the network is 11 

frames, 5 frames on each side of the current frame. The 

neural network has 7 hidden layers with 2048 nodes per 

layer. DNN training consists of unsupervised pre-training 

and supervised fine-tuning. 

 
5.2. Effects of multi-label learning 

 

The   recognition   results   of   English   native   articulatory 

attributes are shown in Table 1. Compared to baseline DNN 

models which are separately trained as conventionally done 

[21], ML-DNN improves the recognition performance of all 

attribute classes. From the last row of Table 1, we see that 

ML-DNN significantly reduced the error rate on both testing 

data sets. The statistical significance was confirmed in a 

two-sided t-test at a significance level of 0.05. The relative 

improvement column shows the average improvement over 

two testing datasets. We observe a large effect in “Place-

Backness” and “Place-Height”. It suggests that sharing the 

network by place-of-articulation attributes is effective. Note 

also that the absolute performance of the two attributes was 

lower than others, so they had much potential of 

improvement.  

Table 1.  Effect of multi-label learning in  

             native attribute recognition (error rate %). 

Attribute Dataset DNN ML-DNN 
Relative 

Improvement 

Manner 
Nov’92 6.32 6.14 

1.72 
Nov’93 8.32 8.27 

Place-

Roundedness 

Nov’92 8.60 8.41 
1.93 

Nov’93 10.27 10.10 

Place-

Backness 

Nov’92 10.70 9.64 
9.20 

Nov’93 13.07 11.96 

Place- 

Height 

Nov’92 9.75 9.08 
5.24 

Nov’93 12.46 12.01 

Overall 
Nov’92 8.85 8.33 

 
Nov’93 11.01 10.60 

 

5.3. Effects of training label correction 

 

We show the effects of correcting label method in Table 2. 

We see that models trained with corrected labels yielded a 

lower error rates in both testing sets. The error rate is further 

reduced to 8.03% in Nov’92. The relative improvement is 

about 10% compared to the DNN baseline (8.85%). The 

same tendency is observed in the Nov’93 dataset. We also 

observe similar relative improvements among different 

attributes, which suggests that label correction was applied 

almost uniformly to all attributes. It is suggested that the 

inconsistencies among different categories are random, and 

they can be corrected by the proposed method. 

Table 2.  Effect of label correction in  

             native attribute recognition (error rate %). 

Attribute Dataset ML-DNN 
ML-DNN  + 

Correction 

Relative 

Improvement 

Manner 
Nov’92 6.14 6.06 

3.19 
Nov’93 8.27 7.85 

Place-

Roundedness 

Nov’92 8.41 8.17 
3.21 

Nov’93 10.10 9.74 

Place-

Backness 

Nov’92 9.64 9.25 
3.32 

Nov’93 11.96 11.65 

Place-

Height 

Nov’92 9.08 8.93 
3.45 

Nov’93 12.01 11.38 

Overall 
Nov’92 8.33 8.03  

Nov’93 10.60 10.10 
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6. PRONUNCIATION ERROR DETECTION  

OF LANGUAGE LEARNERS 

 

In this section, we apply the proposed methods to non-native 

speech for pronunciation error detection. We detect the 

pronunciation errors directly on the attribute level, which is 

different from the phone level error detection conducted in 

other works [10-14]. 

 

6.1. Experimental settings 

 

The evaluation data is a corpus of English words spoken by 

Japanese students [31]. There are 7 speakers (2 male, 5 

female) and each speaker uttered a same set of 850 English 

words. Pronunciation errors of vowels are focused in this 

experiment. We employ finite state decoding network [13] 

for pronunciation error detection, which includes the 

canonical pronunciation and possible pronunciation errors. 

Detection accuracy (DA) [15-16] is used to evaluate the 

performance of different methods. 

 

6.2. Experimental results 

 

Fig. 4 compares the overall pronunciation error detection 

performance of three different methods: conventional DNN, 

ML-DNN, and ML-DNN trained with corrected labels (ML-

DNN + correction). We observe the effects of proposed 

methods when they are applied to the pronunciation error 

detection of non-native speech. Compared to the 

conventional DNN, ML-DNN improves DA significantly 

(0.05 significance level) from 72.10% to 74.00%. Similar to 

the native attribute recognition task, label correction method 

further improved the performance of pronunciation error 

detection. However, the absolute performance is much 

lower than that of native attribute recognition. This is 

mainly caused by the mismatch that attribute models were 

trained only using native speech while testing samples are 

non-native. We address this problem by incorporating a 

native speech database of the language learners [21]. 

 
Fig. 4.   Overall detection accuracy of different methods. 

 

7. NON-NATIVE WORD RECOGNITION OF 

LANGUAGE LEARNERS 

 

7.1. Task and recognition configuration 

 

Finally, the  proposed  methods are evaluated on  non-native 

speech recognition task, which is a necessary module in 

advanced conversation based pronunciation learning system. 

Similar to that used in [28], the attribute classification is 

used as the secondary task to improve the speech 

recognition performance. We conducted word recognition 

experiments with different settings. One is continuous 

speech recognition (CSR) while the other is isolated word 

recognition (IWR) which is more constrained. The 

evaluation data is same as what we used in the previous 

section. Considering the pronunciation variation of non-

native speech, we also conduct experiments with an 

extended lexicon [32], in which each word is represented by 

both canonical pronunciation and other possible 

pronunciation variations. These added pronunciations are 

derived based on the study of phonological properties of the 

native language and the target language.  

 

7.2. Experimental results 

 

From Fig. 5, we see that proposed methods consistently 

perform better in all different recognition settings. ML-DNN 

trained with corrected labels achieved lower WER, which 

are 3.57%, 2.11%, 2.34% and 2.06% absolute improvement 

from the conventional DNN method. All these 

improvements are significant at the significance level of 

0.05 in two-sided t-test. 

 

Fig. 5.   Non-native English word recognition. 

 

8. CONCLUSIONS  

 

In this paper, we present two methods for efficiently 

learning the articulatory models. The multi-label learning 

method allows for learning all the attributes at the same time 

with parameter sharing. This single model with multiple 

outputs can also model the interaction effects of different 

articulators.  Moreover, it can largely reduce the training 

time than the separate training scheme. The correcting 

method can enhance the attribute models with corrected 

frame level training labels. It can reconcile differences 

among different attribute labels through a voting process. 

There are several directions for future work: one is to 

construct a hierarchical acoustic phone model by adding a 

phone classification layer on top of this ML-DNN. We will 

extend the current simple voting method to some confidence 

score based voting methods. Using soft corrected labels may 

also be more effective than the present hard corrected labels. 
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