
ASR RESCORING AND CONFIDENCE ESTIMATION WITH ELECTRA

Hayato Futami, Hirofumi Inaguma, Masato Mimura, Shinsuke Sakai, Tatsuya Kawahara

Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan

ABSTRACT

In automatic speech recognition (ASR) rescoring, the hypothesis
with the fewest errors should be selected from the n-best list using
a language model (LM). However, LMs are usually trained to max-
imize the likelihood of correct word sequences, not to detect ASR
errors. We propose an ASR rescoring method for directly detecting
errors with ELECTRA, which is originally a pre-training method for
NLP tasks. ELECTRA is pre-trained to predict whether each word is
replaced by BERT or not, which can simulate ASR error detection on
large text corpora. To make this pre-training closer to ASR error de-
tection, we further propose an extended version of ELECTRA called
phone-attentive ELECTRA (P-ELECTRA). In the pre-training of P-
ELECTRA, each word is replaced by a phone-to-word conversion
model, which leverages phone information to generate acoustically
similar words. Since our rescoring method is optimized for detecting
errors, it can also be used for word-level confidence estimation. Ex-
perimental evaluations on the Librispeech and TED-LIUM2 corpora
show that our rescoring method with ELECTRA is competitive with
conventional rescoring methods with faster inference. ELECTRA
also performs better in confidence estimation than BERT because it
can learn to detect inappropriate words not only in fine-tuning but
also in pre-training.

Index Terms— speech recognition, language model, ELEC-
TRA, rescoring, confidence estimation

1. INTRODUCTION

Automatic speech recognition (ASR) has been realized by DNN-
HMM hybrid systems with an acoustic model (AM) and a language
model (LM). Recently, end-to-end ASR that integrates an AM and
an LM into a single neural network has achieved prominent per-
formances. There are some architectures for end-to-end modeling:
connectionist temporal classification (CTC) [1], attention-based
encoder-decoder models [2, 3, 4], and neural network transducer
models [5, 6].

End-to-end ASR models are trained on paired speech and tran-
scripts. While the amount of paired data for the target domain is lim-
ited, a large amount of text-only data is often available. An external
LM trained on text-only data is usually applied to improve ASR per-
formance. Shallow Fusion [7, 8, 9] and n-best rescoring are widely
used for applying an external LM to end-to-end ASR. In Shallow
Fusion, the interpolated score of the LM and the ASR model is used
in beam search decoding. In n-best rescoring, which we focus on
in this study, an n-best list obtained from the ASR model is scored
using the LM, then the hypothesis of the highest interpolated score
is selected.

RNN and Transformer LMs are conventionally used for rescor-
ing. They predict each word on the basis of its preceding context
in an autoregressive manner. These autoregressive LMs are usually
trained on sentences without errors by maximizing the likelihood of

the word sequences. In rescoring, however, LMs should discrimi-
nate a hypothesis with fewer ASR errors from other hypotheses with
more errors. Several studies have pointed out that the training ob-
jective of LMs is sub-optimal for rescoring, and they proposed dis-
criminative LMs [10, 11, 12], which are trained with discriminative
criteria using ASR results and their corresponding references. They
are obtained from paired speech and transcripts, the scale of which
is usually limited compared with text-only data.

Recently, BERT [13] has been used for rescoring [14, 15]. BERT
was originally proposed as a pre-training method for NLP tasks such
as question answering and language understanding. BERT can also
be regarded as an external LM that predicts each masked word on the
basis of both its preceding and following context. BERT performs
better in rescoring than conventional autoregressive LMs because of
the deeply bidirectional architecture of its Transformer encoder [14,
15]. However, rescoring with BERT is too time-consuming. It takes
L inference steps to rescore a hypothesis of lengthL [15] by masking
each word iteratively, while Transformer LM takes a single step [16].

In this study, we propose an ASR rescoring method for detect-
ing then counting ASR errors with ELECTRA [17], which is a pre-
training method with a deeply bidirectional architecture like BERT.
Different from BERT, ELECTRA is pre-trained for a replaced to-
ken detection task instead of masked language model (MLM), in
which the generator (BERT) replaces some words of the input by
sampling and the discriminator is trained to predict whether each
word is replaced by BERT or not. ASR error detection can be trained
only on paired data, but ELECTRA can simulate it on large text
corpora. However, there is a mismatch between real ASR errors
and BERT’s replacement used in the pre-training of ELECTRA be-
cause ASR takes acoustic features as input, while BERT does not.
To solve the mismatch, we further investigate two methods of mak-
ing ELECTRA’s training conditions closer to rescoring conditions:
fine-tuning ELECTRA on ASR results for error detection and intro-
ducing phone-attentive ELECTRA (P-ELECTRA). P-ELECTRA is
a modified version of ELECTRA, which employs a phone-to-word
conversion model as a generator instead of BERT. With the help of
phone information, we can obtain replacements that are similar to
ASR errors on text corpora.

Our rescoring method with ELECTRA can solve the two issues
mentioned above: the mismatch between LM training and rescor-
ing objectives and slow inference in rescoring with bidirectional ar-
chitecture. First, it is optimized directly to the rescoring objective
by detecting errors in each hypothesis and selecting the hypothe-
sis with the fewest errors in the n-best list. Second, it can bene-
fit from deeply bidirectional contextual information with faster in-
ference than BERT, as it takes only a single step to rescore with-
out masking. Moreover, rescoring with ELECTRA is faster than
with conventional LMs. ELECTRA conducts binary classification
for rescoring, while conventional LMs conduct word prediction, the
complexity of which is proportional to the vocabulary size.

The proposed rescoring method is closely related to confidence

380978-1-6654-3739-4/21/$31.00 ©2021 IEEE ASRU 2021

estimation, or the ASR error detection task. Confidence estimation
assesses the quality of ASR predictions [18, 19, 20, 21, 22, 23, 24,
25], which is useful for many downstream ASR applications such as
voice assistants. We demonstrate that our models for rescoring can
be applied to confidence estimation without any additional architec-
tural changes or training. ELECTRA is pre-trained for the replaced
token detection task that is close to confidence estimation, and there-
fore it can effectively leverage text-only data.

2. PRELIMINARIES AND RELATED WORK

2.1. ELECTRA

ELECTRA [17] is a pre-training method for downstream NLP tasks
like BERT [13]. In BERT, masked language modeling (MLM) re-
places some input tokens with [MASK], then it is trained to predict
the original tokens. ELECTRA instead employs a replaced token de-
tection task for pre-training. It corrupts the input by replacing some
tokens by sampling from a generator, then a discriminator is trained
to predict whether each token is the original or replacement. While
BERT learns from a small masked-out subset (usually 15%), ELEC-
TRA can learn from all input tokens, which is more computationally
efficient [17].

In the pre-training of ELECTRA, two Transformer-based mod-
els (generator G and discriminator D) are jointly trained. The
procedure is formulated as follows. First, some tokens of the
input y = (y1, y2, ..., yL) are selected and masked out. Let
m = (m1,m2, ...,mk)(1 ≤ mi ≤ L) denote the positions of
masked-out tokens.

ymasked = replace(y,m,[MASK]) (1)

The generator G then predicts tokens of the masked positions and
generates a corrupted example ycorrupt by sampling.

ycorrupt = replace(ymasked,m, ŷ)

ŷi ∼ pG(yi|ymasked), i ∈m (2)

The generator is BERT trained with the MLM objective, and its loss
function is

LG =
∑
i∈m

− log pG(yi|ymasked) (3)

The discriminator D is a binary classifier trained to discriminate
the original token from the token replaced by the generator G. Let
D(i)(y) denote the discriminator output passed through the sigmoid
layer for the i-th token, which should be 1 when yi is replaced. Its
loss function is

LD =

L∑
i=1

−δ(ycorrupti , yi) log(1−D(i)(ycorrupt))

−(1− δ(ycorrupti , yi)) logD
(i)(ycorrupt) (4)

where δ(ycorrupti , yi) becomes 1 when ycorrupti = yi, and 0 oth-
erwise. The weighted sum of LG and LD is minimized during
pre-training. After pre-training, the discriminator is fine-tuned on
downstream NLP tasks, and it is referred to as “ELECTRA”. In this
study, we use the discriminator for rescoring and confidence estima-
tion tasks.

2.2. Rescoring

Rescoring is a simple and widely used method to apply LMs to end-
to-end ASR models. An n-best list is generated by beam search with
the ASR model, then each hypothesis in the list is rescored using the
LM.

Score(X,y) = log pASR(y|X) + αScoreLM(y) + β|y| (5)

where X denotes acoustic features, and y = (y1, ..., yL) denotes
a hypothesis. The hypothesis that has the highest Score(X,y) is
selected. As log pASR and ScoreLM tend to assign a higher score to
a shorter hypothesis, β|y| encourages longer hypotheses to reduce
deletion errors. Here, α and β are hyperparameters.

The ScoreLM is conventionally calculated using autoregressive
LMs such as RNN and Transformer LMs. They provide a likelihood
score for each hypothesis y as

ScoreLM(y) =

L∑
i=1

log p(yi|y<i) = log p(y1, ..., yL) (6)

where y<i = (y1, ..., yi−1). Autoregressive LMs predict each
token using its preceding context. Transformer LM can calculate
p(yi|y<i) for all i in parallel with self-attention mechanism [16].

Recently, BERT has also been used for calculating ScoreLM. It
provides a pseudo-likelihood score [26] as

ScoreLM(y) =

L∑
i=1

log p(yi|y\i) (7)

where y\i = (y1, ..., yi−1,[MASK], yi+1, ..., yL) (the i-th token of
y is masked out). BERT is reported to perform better in rescoring
than autoregressive LMs by predicting each token using both its pre-
ceding and following context [14, 15]. It also performs better than
bidirectional RNN LMs [27, 28], because it is “deeply bidirectional”
[13], while the bidirectional RNN is the shallow concatenation of
two directions of RNNs [29]. However, rescoring with BERT takes
L inference steps for a hypothesis of length L. It requires a iterative
procedure to calculate p(yi|y\i) for each position i using different
masked inputs y\i. More recently, Electric [30] was proposed to
calculate p(yi|y\i) for all i in a single step. It efficiently provides
ScoreLM based on pseudo-likelihood through noise contrastive es-
timation training. Electric only learns the training data distribution,
while ELECTRA learns whether each token comes from the data dis-
tribution or noise distribution by the generator in pre-training [30].
ELECTRA provides ScoreLM based on error detection. It can be
fine-tuned on ASR hypotheses and directly applied to confidence es-
timation.

Another stream of ASR rescoring includes discriminative lan-
guage modeling. LMs are usually trained to maximize the likeli-
hood of word sequences without errors. However, this does not nec-
essarily maximize the performance of ASR rescoring, in which the
LM should discriminate the hypothesis with the fewest errors from
hypotheses that contain more errors. In [10], the word-level log-
likelihood ratio of ASR hypotheses and references was used as a
training criterion for RNN LMs. In [11, 31], a minimum word er-
ror rate (MWER) training for RNN LMs was proposed. In [12, 32],
a large margin criterion that enlarges the margin between hypothe-
ses and references was applied to RNN LM, Transformer LM, and
BERT training. In these studies, the likelihood of each word or
sentence was adapted to the discriminative criterion using ASR hy-
potheses and references. In this study, we use ELECTRA to learn
error detection that is in nature discriminative and can be trained not
only on paired data but also on large text corpora.

381

2.3. Confidence estimation

Confidence estimation is an important task for ASR applications to
mitigate the adverse effects of ASR errors, which are inevitable. For
example, in voice assistants, queries of low confidence will be asked
back. In audio transcription tasks, it helps manual corrections by
flagging less confident words. Confidence estimation is also used
in semi-supervised learning [33], in which utterances with confident
predictions are selected as training data.

Confidence scores are estimated at word-level or utterance-level.
In this study, we focus on word-level confidence estimation. In
DNN-HMM ASR, reliable word-level confidence scores can be ob-
tained from word posterior probabilities over lattices [18], and they
are further improved by confidence estimation modules (CEMs) [19,
20, 21]. In seq2seq ASR models, confidence scores can be obtained
from softmax probabilities of their decoders, but they are not reliable
enough because of overconfidence [34]. In [22], a lightweight CEM
that uses internal features of a seq2seq model was proposed to mit-
igate overconfidence. In [23], softmax temperature values for each
token were predicted to adjust overconfident probabilities. In CTC-
based ASR models we used in this study, confidence scores can be
obtained with the forward-backward algorithm [35], which was re-
ported to perform well [24]. End-to-end ASR models and CEMs
usually use subword units such as byte pair encoding (BPE) [36] to
handle rare and unknown words. They provide subword-level confi-
dence scores, but in many downstream applications, word-level con-
fidence scores are useful. Word-level confidence scores can be ob-
tained simply by taking the average [22], product, or minimum [25]
of subword-level scores if a word consists of multiple subwords. In
[37], a subword-level CEM was directly trained with the word-level
confidence objective. In these studies, CEMs were mainly trained
with ASR results and their references obtained from paired data. In
this study, ELECTRA is used as a CEM, which can be pre-trained
by simulating the confidence estimation task on large text corpora.

3. PROPOSED METHOD

3.1. Rescoring with ELECTRA

In ELECTRA,D(i)(y) is pre-trained to output 1 when the i-th token
is replaced, and 0 otherwise, as illustrated in Fig. 1 (a). ELECTRA
learns to detect syntactically or semantically inappropriate tokens,
which is useful for detecting ASR errors. By counting the expected
number of errors in a hypothesis, ScoreLM(y) is defined as

ScoreLM(y) = −
L∑

i=1

D(i)(y) (8)

which is illustrated in Fig. 1 (c). Note that the score should be
higher for hypotheses with fewer errors. Rescoring with ELEC-
TRA can benefit from deeply bidirectional contextual information
with a single-step inference per hypothesis, while BERT requires L
steps. ELECTRA can look at all the tokens including yi to calculate
D(i)(y), and therefore it provides D(i)(y) for all i in parallel. Even
compared with Transformer LM, ELECTRA is faster because it has
a sigmoid layer for outputs. Transformer LM has a softmax layer,
the computation of which is proportional to the vocabulary size.

3.2. Fine-tuning on ASR hypotheses

In pre-training, ELECTRA is trained to detect samples generated
from BERT. However, in rescoring, ELECTRA needs to detect er-
rors generated from the ASR model. BERT generates tokens on the

Discriminator
(ELECTRA)

0.

5����

�

5.�

�����1�1���
���(�
	����
�����1�1���
�����1�1���

0.

0��

�

5.�

0.

�)
(�

�

5.�

Generator
(= BERT)

0.

���

�

5.�

�����1�1���
���(�
	����
�����1�1���
�����1�1���

0.

0��

�

5.�

0.

�)
(�

�

5.�

Decoder

80.

���

1�

�1�1��

����
���	
����
����

ASR model

sample

Encoder

��������
�������� ����
��� ���

�������������� ��	� ���

sample

Generator
(= Phone-to-Word)

beam
search

Discriminator

!!"#$%&

!
Speech saying
�80.��9� 1���1�1��

"#$%&!"
���� ��

! !'())*+, "(.)(!'())*+,)

!!"#$%&! !'())*+, "(.)(!'())*+,)

%:

%!"#$%&:

A hypothesis !
of N-best list "(.)(!)

(a) Pre-training of ELECTRA

(b) Pre-training of Phone-attentive ELECTRA (P-ELECTRA)

(c) Rescoring with ELECTRA or P-ELECTRA

Discriminator
(P-ELECTRA)

Fig. 1. Overview of our rescoring method. First, ELECTRA or
P-ELECTRA is pre-trained on text data (a) or (b). It can then be
fine-tuned on ASR hypotheses for error detection. Finally, it assigns
ScoreLM to each hypothesis for rescoring (c). ASR model can be
regarded as generator that produces corrupted input.

basis of linguistic context, but the ASR model generates tokens on
the basis of both acoustic features and linguistic context. Acousti-
cally similar tokens, such as “two” and “too”, tend to be mistaken
in ASR. To solve the mismatch between pre-training and rescoring
conditions, we fine-tune ELECTRA on ASR hypotheses including
real ASR errors. The ASR hypotheses are aligned with their corre-
sponding references and each word of them is labeled as correct or
incorrect. They can be obtained from paired speech and transcripts
used for ASR training. Note that only the discriminator is fine-tuned.

3.3. Phone-attentive ELECTRA

Fine-tuning on ASR hypotheses can be done only on a limited
amount of paired data, and therefore it is prone to overfitting.
To generate acoustically similar errors on text data, we leverage
phone information that can be automatically obtained from word
sequences using a pronunciation dictionary [38, 39]. We propose a
modified version of ELECTRA called phone-attentive ELECTRA
(P-ELECTRA). In P-ELECTRA, the generatorG is a phone-to-word
conversion model instead of BERT used in original ELECTRA. It is
a Transformer-based conditional masked language model (CMLM)
[40], which consists of an encoder and a decoder, as illustrated in
Fig. 1 (b). Some tokens of phones are randomly replaced with
[MASK] and fed into the encoder as pmasked to prevent overfitting,

382

Table 1. Examples of generated tokens in pre-training of ELECTRA and P-ELECTRA. In addition to ymasked, phone tokens are used as
inputs in pre-training of P-ELECTRA. “ ” denotes word boundary.

y: i don ’ t believe ann knew any magic or she ’ d have worked it before
ymasked: i don ’ t believe [MASK] [MASK] any magic or she ’ d have [MASK] it before
ycorrupt in ELECTRA: i don ’ t believe there is any magic or she ’ d have used it before
ycorrupt in P-ELECTRA: i don ’ t believe and you any magic or she ’ d have worked it before

which is called “textaugment” [41]. Some tokens of words are also
masked out and fed into the decoder as ymasked. The generator
predicts word tokens of the masked positions on the basis of both
phone and word tokens and generates a corrupted example ycorrupt.

ycorrupt = replace(ymasked,m, ŷ)

ŷi ∼ pG(yi|ymasked,pmasked), i ∈m (9)

Note that phones are not required in rescoring because only the dis-
criminator is used. For efficient training, sequences of phones and
those of corresponding words are concatenated up to a certain length,
respectively, then input to the generator.

Table 1 compares the generated tokens by BERT in the pre-
training of ELECTRA and those by the phone-to-word conversion
model in the pre-training of P-ELECTRA. In P-ELECTRA, “ ann
knew” is replaced with “ and you” by using the phone-to-word

conversion model, which is more acoustically similar and likely to
appear in ASR results than the replacement by using BERT “ there
is”.

3.4. Confidence estimation with ELECTRA

In ELECTRA (including P-ELECTRA), c(i)(y) = 1−D(i)(y) can
be regarded as a token-level confidence score. When we use sub-
word units such as BPE, a word-level confidence score c(i)word(y) is
obtained by taking the minimum value of token-level scores for each
word. ELECTRA leverages the knowledge of large text corpora for
confidence estimation. BERT can also be applied to confidence esti-
mation by pre-training for MLM then fine-tuning on ASR hypothe-
ses. For fine-tuning, a new sigmoid layer for outputs is added to
BERT, and its parameters are trained from scratch. On the other
hand, ELECTRA has the sigmoid layer and can learn confidence
scores even from the pre-training stage by detecting replaced to-
kens. ELECTRA is also more robust against ASR errors, as it is pre-
trained not on ground truth text but on corrupted examples, which is
indicated in punctuation restoration [42].

As mentioned in Section 2.3, the ASR model itself provides
word-level confidence scores p(i)word(y|X). We interpolate the scores
of ASR and ELECTRA as

c
′(i)
word = (1− γ)p(i)word(y|X) + γc

(i)
word(y) (10)

where γ is a tunable weight parameter.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental conditions

We evaluated our method using the Librispeech [43] and TED-
LIUM2 [44] corpora. The training data of Librispeech consists of
960 hours of paired speech and transcripts, and about 800 million
words of additional text data. Its evaluation data consist of a “clean”

set with lower-WER speakers and “other” set with higher-WER
ones. The text is tokenized using BPE [36] of vocabulary size 9951
to make subword tokens. It is also converted to phone tokens of
vocabulary size 74 using a lexicon. The training data of TED-
LIUM2 consist of 207 hours of paired data and about 250 million
words of additional text. The text is converted to subword tokens of
vocabulary size 9798 and phone tokens of vocabulary size 44.

We prepared a CTC-based model for end-to-end ASR that con-
sists of Transformer encoder with 12 layers, 256 hidden units, and 4
attention heads. We used the Adam [45] optimizer with Noam learn-
ing rate scheduling [3] of warmup n = 25000, k = 5. SpecAug-
ment [46] was applied to acoustic features. Speed perturbation [47]
was also applied in the TED-LIUM2 experiments. We obtained a
50-best list with beam search decoding.

We prepared Transformer LM, BERT, ELECTRA, P-ELECTRA
for rescoring and confidence estimation. Transformer LM, BERT,
the generator for ELECTRA and ELECTRA (discriminator), and
P-ELECTRA (discriminator) consist of Transformer with 12 lay-
ers, 256 hidden units, and 4 attention heads. The generator for P-
ELECTRA (a phone-to-word conversion model) consists of 4-layer
Transformer encoder and 4-layer Transformer decoder, which has
almost the same number of parameters as those of other models.
They are implemented with “transformers” library [48]. We pre-
trained them on the Librispeech text data in Librispeech experiments
and pre-trained them on the TED-LIUM2 text data in TED-LIUM2
experiments. Note that only discriminators are used for rescoring
and confidence estimation tasks in ELECTRA and P-ELECTRA.
We used the Adam optimizer with linear learning rate scheduling, in
which the learning rate increases linearly for the first 10% of the total
steps to 0.0001, thereafter decreasing linearly. During pre-training,
15% of the input subword tokens were selected and replaced with
[MASK]. Next sentence prediction [13] is omitted from the pre-
training objective of BERT in this study as in [49]. In the pre-training
of P-ELECTRA, 30% of the phone tokens were also replaced with
[MASK], as mentioned in Section 3.3. We further fine-tuned BERT,
ELECTRA, and P-ELECTRA for ASR error detection, or confi-
dence estimation, using the 5-best list generated from the ASR train-
ing data. These fine-tuned models are denoted as BERT(FT), ELEC-
TRA(FT), and P-ELECTRA(FT), respectively.

4.2. Experimental results

4.2.1. Rescoring on Librispeech

Table 2 compares rescoring results with different models on Lib-
rispeech. Transformer LM and BERT provide ScoreLM based on
likelihood, as in Eqs. (6) and (7), respectively, and ELECTRAs
(ELECTRA and P-ELECTRA) provide ScoreLM based on error
counting, as in Eq. (8). α and β in Eq. (5) were adjusted using
development sets. As the range of log-likelihood and that of error
counts differ, α for Transformer LM or BERT and that for ELEC-
TRAs were also different. For example, α = 0.5, β = 1.0 were

383

Fig. 2. Scoring comparison with Transformer LM and fine-tuned P-ELECTRA for Librispeech “clean” set. “×” denotes average −ScoreLM

for each “Number of errors”.

Number of errors

−"#$%&!"

	� 	

��� ���

�	�
���

���
���

���
��� ���

! = 0.572

���
���

��

���

Number of errors

! = 0.752

���
��	

���
���

���
���

	��

(a) Scoring with Transformer LM (b) Scoring with P-ELECTRA (FT)

Table 2. Rescoring results on Librispeech. x(FT) denotes that model
x was fine-tuned on ASR 5-best list. “Runtime” denotes runtime
compared with Transformer LM. Bottom 4 rows are results of pro-
posed method.

WER(%) ↓ Runtime ↓
clean other clean

baseline ASR (CTC) 5.80 13.46 -
+Transformer LM 4.08 10.45 ×1.0
+BERT 4.02 10.25 ×27.1
+BERT (FT) 4.29 10.71 ×0.8
+ELECTRA 4.07 10.87 ×0.8
+ELECTRA (FT) 3.98 10.53 ×0.8
+P-ELECTRA 4.04 10.44 ×0.8
+P-ELECTRA (FT) 4.00 10.42 ×0.8
oracle 2.47 7.85 -

suitable for Transformer LM and α = 9.0, β = 0 for ELECTRA. In
terms of word error rate (WER), BERT outperformed Transformer
LM, which is consistent with previous studies [14, 15]. ELEC-
TRA pre-trained for replaced token detection detected ASR errors
without fine-tuning and improved WER over the baseline ASR. By
fine-tuning ELECTRA on ASR hypotheses (5-best), it outperformed
Transformer LM for the “clean” set. Rescoring with P-ELECTRA
outperformed ELECTRA and was competitive with Transformer
LM without fine-tuning not only for the “clean” set but also for the
“other” set. We saw that the pre-training method using phones in
P-ELECTRA was effective, especially for the “other” set that con-
tains more ASR errors. However, fine-tuning P-ELECTRA did not
show much WER improvement. ScoreLM based on error counting
in Eq. (8) can also be calculated with fine-tuned BERT, but this was
not as successful as with ELECTRAs. We saw that the replaced
token detection task for the pre-training of ELECTRAs is closer to
the target rescoring task than MLM for BERT and thus lead to better
rescoring. Our rescoring with ELECTRAs requires only 80% of the
runtime of that with Transformer LM, as ELECTRAs do not com-

Table 3. Correlation coefficients between LM scoring and number
of errors. Scoring of Transformer LM and BERT is derived from
likelihood (pseudo-likelihood), and scoring of bottom 5 methods is
derived from error counting.

Coefficients ρ
clean other

Transformer LM 0.572 0.625

BERT 0.655 0.728

BERT (FT) 0.716 0.738

ELECTRA 0.620 0.634

ELECTRA (FT) 0.740 0.762

P-ELECTRA 0.687 0.767

P-ELECTRA (FT) 0.752 0.788

pute the softmax layer of V entries. Rescoring with BERT resulted
in the largest WER reduction especially for the “other” set, but its
runtime was much inferior to the others, i.e. about 27 times slower
than Transformer LM. It is dependent on not only V but also the
length of a hypothesis L for each hypothesis.

Next, we compared ScoreLM of Transformer LM and that of
fine-tuned P-ELECTRA for the Librispeech “clean” set, as shown in
Fig. 2. “Number of errors” in the figure indicates word-level sub-
stitution, insertion, and deletion errors of each hypothesis against
its reference, which are used in WER calculation. −ScoreLM of
P-ELECTRA corresponds to the expected number of subword-level
substitution and insertion errors. It is correlated to the number of all
types of word-level errors. In P-ELECTRA, the average −ScoreLM

increases almost linearly with the number of errors. Table 3 lists
the correlation coefficients between−ScoreLM and the actual num-
ber of errors. Fine-tuning on actual ASR errors made the correla-
tion higher. P-ELECTRA achieved a high correlation with and even
without fine-tuning, which indicates its pre-training using phone in-
formation simulated ASR error detection well.

384

Table 4. Confidence estimation results on Librispeech. x(FT)
denotes that model (CEM) x was fine-tuned on ASR 5-best list.
ASR+x denotes confidence score interpolation between ASR and
CEM x.

AUC ↑ NCE ↑
clean other clean other

ASR 0.955 0.927 0.546 0.426

BERT(FT) 0.945 0.914 0.544 0.394

ELECTRA 0.903 0.871 0.418 0.318

ELECTRA(FT) 0.956 0.928 0.594 0.455

P-ELECTRA 0.922 0.907 0.472 0.375

P-ELECTRA(FT) 0.958 0.935 0.615 0.499
ASR+BERT(FT) 0.973 0.952 0.660 0.535

ASR+ELECTRA 0.965 0.942 0.623 0.499

ASR+ELECTRA(FT) 0.976 0.956 0.681 0.560

ASR+P-ELECTRA 0.969 0.951 0.649 0.541

ASR+P-ELECTRA(FT) 0.977 0.959 0.690 0.580

4.2.2. Confidence estimation on Librispeech

We evaluated the performance of confidence estimation with differ-
ent models (CEMs) on Librispeech, on the basis of the widely used
metrics: the area under curve (AUC) of the receiver operating char-
acteristic (ROC) curve and normalized cross entropy (NCE). The
ROC curve shows the false positive and true positive rates for dif-
ferent thresholds. AUC values range from 0 to 1, and a higher AUC
means a better estimator. Let c = (c1, ..., cN) denote estimated
confidence scores for all words, and t = (t1, ..., tN) denote their
corresponding targets, where ti = 1 for correct words and 0 for
incorrect words. NCE is defined as

NCE(c, t) =
H(t)−H(t, c)

H(t)
(11)

where H(t) denotes the entropy for the targets and H(t, c) denotes
the binary cross entropy between the targets and estimated scores
[50]. NCE measures how close the confidence scores are to the tar-
gets and NCE = 1 for the perfect estimator.

The results are listed in Table 4. Note that the same models
are used in rescoring and confidence estimation. Confidence scores
for “ASR” were obtained with the CTC forward-backward algorithm
without any CEMs. ELECTRA and P-ELECTRA provided good
confidence scores even without fine-tuning. By fine-tuning them,
they outperformed fine-tuned BERT. BERT was pre-trained to pre-
dict masked tokens, while ELECTRAs were already pre-trained to
detect inappropriate tokens. As shown in the bottom five rows of
Table 4, we investigated interpolating confidence scores of ASR and
CEMs, as in Eq. (10). γ was determined using the development sets.
For example, γ = 0.6 was suitable for fine-tuned P-ELECTRA.
By interpolation, we obtained far better confidence scores, which
indicates CEMs pre-trained on large text corpora provide effective
information that the ASR model does not provide. Among them,
P-ELECTRA achieved the best performance.

4.2.3. Rescoring and confidence estimation on TED-LIUM2

We also conducted rescoring and confidence estimation experiments
on TED-LIUM2. The results are listed in Table 5. They were eval-
uated on the “test” set, and the hyperparameters were adjusted us-
ing the “dev” set. In rescoring, similar trends to Librispeech were

Table 5. Rescoring and confidence estimation results on TED-
LIUM2. “AUC(+ASR)” denotes AUC score by confidence score
interpolation between ASR and CEM.

Rescoring Confidence estimation
WER ↓ AUC ↑ AUC(+ASR) ↑

ASR (CTC) 12.48 0.914 0.914

+Transformer LM 9.90 0.766 0.914

+BERT 9.83 0.854 0.914

+BERT (FT) 10.47 0.878 0.939

+ELECTRA 10.03 0.864 0.930

+ELECTRA (FT) 10.00 0.894 0.939

+P-ELECTRA 9.89 0.889 0.937

+P-ELECTRA (FT) 9.83 0.906 0.942
oracle 7.52

observed, and fine-tuned P-ELECTRA reduced WER as much as
BERT with faster inference. In confidence estimation, CEMs them-
selves did not perform well, but the interpolation with ASR gave a
large improvement. Among the CEMs, fine-tuned P-ELECTRA per-
formed the best. On TED-LIUM2, the effect of fine-tuning was lim-
ited because of the smaller amount of paired data for generating the
ASR 5-best list compared with Librispeech. Therefore, pre-training
using phone information on text data was important for better per-
formance.

5. CONCLUSIONS

We propose to apply ELECTRA to ASR rescoring and confidence
estimation, in which ELECTRA detects ASR errors. ELECTRA is
pre-trained on large text corpora to predict whether each token is
replaced by BERT or not. However, there is a mismatch between
ASR errors and token replacement by BERT. Fine-tuning on ASR
hypotheses can eliminate this mismatch, and we further propose
phone-attentive ELECTRA to mitigate the mismatch also in pre-
training on text. In rescoring, we showed that ELECTRA was faster
than Transformer LM because ELECTRA conducts binary classi-
fication with the sigmoid layer instead of the softmax computation,
achieving competitive WER improvement. In confidence estimation,
we also showed that fine-tuned ELECTRA worked better than fine-
tuned BERT, and the interpolation with the ASR confidence pro-
vided highly reliable confidence scores. For future work, we will
investigate corrupting inputs by not only replacement but also in-
sertion and deletion in pre-training [51, 52] and predicting deletion
errors [20] in rescoring.

6. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural net-
works,” in ICML, 2006, pp. 369–376.

[2] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocabu-
lary conversational speech recognition,” in ICASSP, 2016, pp.
4960–4964.

[3] Linhao Dong, Shuang Xu, and Bo Xu, “Speech-transformer: A

385

no-recurrence sequence-to-sequence model for speech recog-
nition,” in ICASSP, 2018, pp. 5884–5888.

[4] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
in INTERSPEECH, 2020, pp. 5036–5040.

[5] Alex Graves, “Sequence transduction with recurrent neural
networks,” arXiv, 2012.

[6] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik
McDermott, Stephen Koo, and Shankar Kumar, “Transformer
transducer: A streamable speech recognition model with trans-
former encoders and rnn-t loss,” in ICASSP, 2020, pp. 7829–
7833.

[7] Jan Chorowski and Navdeep Jaitly, “Towards better decoding
and language model integration in sequence to sequence mod-
els,” in INTERSPEECH, 2017, pp. 523–527.

[8] Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney,
“Language modeling with deep transformers,” in INTER-
SPEECH, 2019, pp. 3905–3909.

[9] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N. Sainath,
ZhiJeng Chen, and Rohit Prabhavalkar, “An analysis of in-
corporating an external language model into a sequence-to-
sequence model,” in ICASSP, 2018, pp. 1–5828.

[10] Yuuki Tachioka and Shinji Watanabe, “Discriminative method
for recurrent neural network language models,” in ICASSP,
2015, pp. 5386–5390.

[11] Takaaki Hori, Chiori Hori, Shinji Watanabe, and John R.
Hershey, “Minimum word error training of long short-term
memory recurrent neural network language models for speech
recognition,” in ICASSP, 2016, pp. 5990–5994.

[12] Jiaji Huang, Yi Li, Wei Ping, and Liang Huang, “Large margin
neural language model,” in EMNLP, 2018, pp. 1183–1191.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” in NAACL, 2019, pp.
4171–4186.

[14] Joonbo Shin, Yoonhyung Lee, and Kyomin Jung, “Effective
sentence scoring method using BERT for speech recognition,”
in ACML, 2019, pp. 1081–1093.

[15] Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin
Kirchhoff, “Masked language model scoring,” in ACL, 2020,
pp. 2699–2712.

[16] Wei Li, James Qin, Chung-Cheng Chiu, Ruoming Pang, and
Yanzhang He, “Parallel rescoring with transformer for stream-
ing on-device speech recognition,” in INTERSPEECH, 2020,
pp. 2122–2126.

[17] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christo-
pher D. Manning, “ELECTRA: Pre-training text encoders as
discriminators rather than generators,” in ICLR, 2020.

[18] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Confidence
measures for large vocabulary continuous speech recognition,”
IEEE Transactions on Speech and Audio Processing, pp. 288–
298, 2001.

[19] Tatsuya Kawahara, Chin-Hui Lee, and B. Juang, “Flexible
speech understanding based on combined key-phrase detec-
tion and verification,” IEEE Transactions on Speech and Audio
Processing, pp. 558–568, 1998.

[20] Anton Ragni, Qiujia Li, Mark Gales, and Yu Wang, “Con-
fidence estimation and deletion prediction using bidirectional
recurrent neural networks,” in SLT, 2018, pp. 204–211.

[21] Prakhar Swarup, Roland Maas, Sri Garimella, Sri Harish
Mallidi, and Björn Hoffmeister, “Improving ASR confidence
scores for alexa using acoustic and hypothesis embeddings,” in
INTERSPEECH, 2019, pp. 2175–2179.

[22] Qiujia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He, Philip C.
Woodland, Liangliang Cao, and Trevor Strohman, “Con-
fidence estimation for attention-based sequence-to-sequence
models for speech recognition,” in ICASSP, 2021, pp. 6388–
6392.

[23] Alejandro Woodward, Clara Bonnı́n, Issey Masuda, David
Varas, Elisenda Bou-Balust, and Juan Carlos Riveiro, “Con-
fidence measures in encoder-decoder models for speech recog-
nition,” in INTERSPEECH, 2020, pp. 611–615.

[24] Atsunori Ogawa, Naohiro Tawara, Takatomo Kano, and Marc
Delcroix, “Blstm-based confidence estimation for end-to-end
speech recognition,” in ICASSP, 2021, pp. 6383–6387.

[25] Dan Oneaţă, Alexandru Caranica, Adriana Stan, and Horia
Cucu, “An evaluation of word-level confidence estimation for
end-to-end automatic speech recognition,” in SLT, 2021, pp.
258–265.

[26] Alex Wang and Kyunghyun Cho, “BERT has a mouth, and it
must speak: BERT as a Markov random field language model,”
in Proceedings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation, 2019, pp. 30–36.

[27] Ebru Arisoy, Abhinav Sethy, Bhuvana Ramabhadran, and
Stanley Chen, “Bidirectional recurrent neural network lan-
guage models for automatic speech recognition,” in ICASSP,
2015, pp. 5421–5425.

[28] X. Chen, A. Ragni, X. Liu, and Mark J.F. Gales, “Investigat-
ing bidirectional recurrent neural network language models for
speech recognition,” in INTERSPEECH, 2017, pp. 269–273.

[29] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gard-
ner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer,
“Deep contextualized word representations,” in NAACL, 2018,
pp. 2227–2237.

[30] Kevin Clark, Minh-Thang Luong, Quoc Le, and Christopher D.
Manning, “Pre-training transformers as energy-based cloze
models,” in EMNLP, 2020, pp. 285–294.

[31] Ankur Gandhe and Ariya Rastrow, “Audio-attention discrimi-
native language model for asr rescoring,” in ICASSP, 2020, pp.
7944–7948.

[32] Jilin Wang, Jiaji Huang, and Kenneth Ward Church, “Large
margin training improves language models for ASR,” in
ICASSP, 2021, pp. 7368–7372.

[33] Daniel S. Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng
Chiu, Bo Li, Yonghui Wu, and Quoc V. Le, “Improved noisy
student training for automatic speech recognition,” in INTER-
SPEECH, 2020, pp. 2817–2821.

[34] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger,
“On calibration of modern neural networks,” in ICML, 2017,
pp. 1321–1330.

[35] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R. Hershey,
and Tomoki Hayashi, “Hybrid ctc/attention architecture for
end-to-end speech recognition,” IEEE Journal of Selected Top-
ics in Signal Processing, pp. 1240–1253, 2017.

386

[36] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Neural
machine translation of rare words with subword units,” in ACL,
2016, pp. 1715–1725.

[37] David Qiu, Qiujia Li, Yanzhang He, Yu Zhang, Bo Li, Lian-
gliang Cao, Rohit Prabhavalkar, Deepti Bhatia, Wei Li, Ke Hu,
Tara N. Sainath, and Ian McGraw, “Learning word-level con-
fidence for subword end-to-end ASR,” in ICASSP, 2021, pp.
6393–6397.

[38] Ryo Masumura, Naoki Makishima, Mana Ihori, Akihiko
Takashima, Tomohiro Tanaka, and Shota Orihashi, “Phoneme-
to-grapheme conversion based large-scale pre-training for end-
to-end automatic speech recognition,” in INTERSPEECH,
2020, pp. 2822–2826.

[39] Yun Tang, Juan Pino, Changhan Wang, Xutai Ma, and Dmitriy
Genzel, “A general multi-task learning framework to leverage
text data for speech to text tasks,” in ICASSP, 2021, pp. 6209–
6213.

[40] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke
Zettlemoyer, “Mask-predict: Parallel decoding of conditional
masked language models,” in EMNLP, 2019, pp. 6112–6121.

[41] Xiong Wang, Zhuoyuan Yao, Xian Shi, and Lei Xie, “Cascade
rnn-transducer: Syllable based streaming on-device mandarin
speech recognition with a syllable-to-character converter,” in
SLT, 2021, pp. 15–21.

[42] Michael Hentschel, Emiru Tsunoo, and Takao Okuda, “Mak-
ing punctuation restoration robust and fast with multi-task
learning and knowledge distillation,” in ICASSP, 2021, pp.
7773–7777.

[43] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An ASR corpus based on public
domain audio books,” in ICASSP, 2015, pp. 5206–5210.

[44] Anthony Rousseau, Paul Deléglise, and Yannick Estève, “En-
hancing the TED-LIUM corpus with selected data for language
modeling and more TED talks,” in LREC, 2014, pp. 3935–
3939.

[45] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” CoRR, 2015.

[46] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu,
Barret Zoph, Ekin D. Cubuk, and Quoc V. Le, “SpecAugment:
A simple data augmentation method for automatic speech
recognition,” in INTERSPEECH, 2019, pp. 2613–2617.

[47] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and S. Khudan-
pur, “Audio augmentation for speech recognition,” in INTER-
SPEECH, 2015, pp. 3586–3589.

[48] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush, “Transformers: State-
of-the-art natural language processing,” in EMNLP, 2020, pp.
38–45.

[49] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke Zettlemoyer,
and Veselin Stoyanov, “RoBERTa: A robustly optimized bert
pretraining approach,” arXiv, 2019.

[50] M. Siu and H. Gish, “Evaluation of word confidence for speech
recognition systems,” Comput. Speech Lang., pp. 299–319,
1999.

[51] Jiatao Gu, Changhan Wang, and Junbo Zhao, “Levenshtein
transformer,” in NeurIPS, 2019.

[52] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer, “BART: Denoising sequence-to-
sequence pre-training for natural language generation, trans-
lation, and comprehension,” in ACL, 2020, pp. 7871–7880.

387

