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Abstract
Speech emotion recognition (SER) systems can learn linguistic
information by integrating automatic speech recognition (ASR).
However, existing SER systems fall short in explicitly learn-
ing semantic emotional information from ASR predictions. Our
proposed system addresses this problem by incorporating a se-
mantic feature extractor for explicit emotional information ex-
traction. Furthermore, a cross attention-based information in-
teraction module is proposed to learn the complementary emo-
tional information in the embeddings from both feature extrac-
tors. Within the interaction module, a temporal-aware gate fu-
sion network is incorporated to dynamically integrate the em-
beddings from acoustic and semantic feature extractors and mit-
igate the impact of ASR errors in SER. Experimental results on
IEMOCAP show that our system outperforms the existing SER
systems by improving the unweighted accuracy by 3.32%.
Index Terms: speech emotion recognition, speech recognition,
human-computer interaction, attention

1. Introduction
Speech is a vital component of human communication and
an essential medium for expressing emotions. Consequently,
speech emotion recognition (SER), which aims to discern hu-
man emotion from spoken audio, has become crucial for build-
ing empathic human-computer interactions (HCI). In recent
years, learning emotional states for virtual voice assistants and
chatbots has become increasingly popular, thus making SER an
active research. It is also used to augment call center services
by analyzing customer sentiment and aiding in detecting and
treating mental health issues through vocal cues.

The inherent difficulties in collecting and annotating emo-
tional speech data have resulted in limited training samples in
existing SER corpora. Traditional deep learning-based meth-
ods have primarily focused on convolutional neural networks
(CNNs) [1, 2] to identify the acoustic patterns (such as pitch,
energy, and formants) and recurrent neural networks (RNNs)
[3, 4] to learn latent features from speech. Moreover, the associ-
ation between linguistic information and emotional cues is well-
established, highlighting the critical role of ASR in enhancing
the understanding of emotions. However, ASR performance of
emotional speech is unsatisfactory. Therefore, instead of using
the output transcription, a previous study [5] proposed to im-
prove SER using the hidden output of the ASR model.

In recent years, self-supervised learning (SSL) models such
as Wav2Vec-2.0 [6] have shown promising performance in
learning both low-level acoustic features and linguistic infor-
mation [7]. It is pre-trained on a large amount of unlabeled data
to embed the prior linguistic knowledge, enabling it to be fine-
tuned for various tasks such as SER [8], ASR, [9] and speech

separation [10]. For instance, recent studies [11] confirmed the
effectiveness of leveraging pre-learned Wav2Vec-2.0 in improv-
ing SER over traditional deep learning models [12]. Besides,
the SSL models are also beneficial for ASR since they have al-
ready learned coarser linguistic information. Thus, finetuning
Wav2Vec-2.0 for low-resource ASR achieved promising perfor-
mance with only one hour of training data from the target lan-
guage [13]. These advantages of SSL models fit the problem of
data spareness of emotional speech. With the SSL models, the
previous study [14] improved SER by training SER and ASR
within the shared acoustic model (Wav2Vec-2.0). The experi-
mental results confirmed that a better ASR-trained model yields
better SER results.

Although implicitly learning linguistic information helps
the model better capture the emotional state from speech
[14, 15], there are two main limitations in speech-only mod-
els. Firstly, most existing SER systems lack the integration of a
semantic extraction module, which explicitly learns emotional
cues from the linguistic output of ASR. Secondly, the ASR-
predicted text inevitably includes errors of differing severity
in each sentence, typically resulting in degraded SER perfor-
mance compared to ground truth text transcription. The mul-
timodal systems, which combine the speech and ground-truth
transcription as input features, usually perform better compared
with speech-only unimodal systems [16, 17]. However, access
to the ground-truth transcription is not practical in most applica-
tion contexts. A previous study [18] explored extracting seman-
tic information from speech only by encoding the ASR output
using a semantic feature extractor (BERT). However, their sys-
tem still suffers from ASR errors, which affect the training and
evaluation of the semantic feature extractor. Furthermore, the
complementary information in acoustic and semantic features
is not well explored. These highlight the need for discrimina-
tive acoustic and semantic information learning from speech.

This paper proposes a multi-level information extraction
and interaction model, which uses only speech as input, lever-
ages the acoustic and semantic information to enhance SER.
Firstly, we train the pre-trained acoustic feature extractor for
SER and ASR to explicitly embed the emotional and linguistic
information. Then, joint training on the acoustic and semantic
feature extractor for SER is conducted. During joint training,
the transcription is leveraged as the input feature of the seman-
tic feature extractor to learn more discriminative semantic repre-
sentation. After extracting the acoustic and semantic features, a
cross-modal gated interaction (CmGI) module is introduced for
multi-modal feature fusion. It learns the complementary infor-
mation from multi-model features. Moreover, a temporal-aware
gated mechanism is adopted to dynamically modulate the con-
tribution of each feature representation, effectively mitigating
the impact of ASR errors during the inference phase.
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Figure 1: Overall flowchart of the proposed information interaction system for SER.

2. Proposed method
In the proposed system (Figure 1), acoustic and linguistic in-
formation is initially extracted from the input speech. Subse-
quently, emotional semantic information is derived from the lin-
guistic data, thereby establishing a multi-level analysis frame-
work. Finally, an information interaction module is employed to
learn the complementary emotional information obtained from
both acoustic and linguistic features.

2.1. Acoustic and semantic information extraction for SER

This section introduces the acoustic (HuBERT) and semantic
(BERT) emotion feature extractors. Given an input speech u,
we incorporate HuBERT, which consists of 7 CNN layers and
24 Transformer layers, to extract the acoustic emotion represen-
tation xa ∈ Rt×d. Here, t denotes the length of the utterance,
and d is the hidden dimension of the Transformer layer. For the
ASR module, we fed xa into a fully connected layer (FC layer)
and applied the connectionist temporal classification (CTC) loss
function to learn the linguistic information, which can be used
in the semantic emotion feature extractor.

LASR = CTC(xa, T ) (1)

where LASR is the loss function of ASR. During the training
phase, the ground-truth transcription T is used as the input of
BERT, which is composed of an embedding layer followed by
Transformer layers, to extract the semantic emotion representa-
tion xl ∈ Rt×d. For the inference phase, only speech is used as
the input, and we decode the output of the ASR module to get
predicted transcription Tpred. Then xl is extracted from T pred

using BERT. The overall objective function L is defined as:

L = αLASR + (1− α)LE (2)

where α is a weight parameter, and LE is the SER objective
function, which will be introduced in the following section.

2.2. Cross-modal gated interaction

2.2.1. Intra- and inter-modal interaction learning

The feature extractors learn the emotional information from au-
dio and text inputs independently. Acknowledging that human
emotion analysis includes multiple sources, we incorporate dual
branches of the cross-modal gated interaction (CmGI) module,
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Figure 2: Structure of cross-modal gated interaction (CmGI).

which learns the mutual relationship by integrating emotional
information of xa into xl and vice versa. As shown in Figure
2, our model first employs self-attention (SA) mechanisms for
learning intra-modal interactions within acoustic and semantic
embeddings.

sa = softmax
(
(xaWQ)(xlWK)T /

√
dk

)
(xlWV )

sl = softmax
(
(xlWQ)(xaWK)T /

√
dk

)
(xaWV )

(3)

where sa ∈ Rt×d and sl ∈ Rt×d represents the output features
of SA that can be either learned from xa or xl. The matrices
WQ, WK , and WV are the learned weights for queries, keys,
and values. These layers ensure the preservation of emotional
information during feature compression. Subsequently, sa and
sl are fed into the cross-attention (CA) mechanism.

ca = softmax
(
(saWQ)(slWK)T /

√
dk

)
(slWV )

cl = softmax
(
(slWQ)(saWK)T /

√
dk

)
(saWV )

(4)

where ca ∈ Rt×d ingegrates emotional information from sl to
sa, and cl ∈ Rt×d ingegrates emotional information from sa to
sl. This mechanism ensures the model captures the inter-modal
interactions between acoustic and semantic embeddings.

2.2.2. Temporal-aware gated fusion model

In emotion recognition, the significance of information from
different modalities is different. For instance, when negative
emotions are expressed sarcastically (e.g., “That’s great”), anal-
ysis of emotion based on linguistic information is difficult.
However, the model can detect the anger of the speaker from the
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Table 1: Comparison of different approaches integrating ASR and semantic extraction module for SER. The modules for SER, ASR,
and semantic information extraction used in each system are listed. “GT” represents the ground truth; “Pred” represents the ASR
predicted transcription.

Exp
Systems

Input of feature extractor
SER ASRAcoustic Linguistic

SER ASR Semantic Speech GT Pred UA WA WER

Speech-only Models

1 HuBERT ✗ ✗ ✓ 70.32 70.84 -

2 HuBERT (shared) ✗ ✓ 75.28 75.13 13.57

3 [19] LSTM-LAS (shared) ✗ ✓ 64.40 63.10 56.40

4 [5] LSTM LSTM-Attention ✗ ✓ 69.70 68.60 35.70

5 [20] LSTM-Attention DNN-HMM LSTM-Attention ✓ ✓ 75.90 76.10 43.50

6 [18] Wav2Vec-2.0 (shared) BERT ✓ ✓ - 74.20 15.00

7 (Ours) HuBERT (shared) BERT ✓ ✓ 77.25 76.86 13.61

Text-only Models

8 ✗ ✗ BERT ✓ 67.13 66.85 -

Speech-Text Multi-model Models

9 HuBERT ✗ BERT ✓ ✓ 72.15 73.07 -

10 HuBERT (shared) BERT ✓ ✓ 77.64 77.36 13.64

acoustic features. In such scenarios, it is crucial for the model
to increase the importance of xa for emotion recognition. Prior
work [21] utilized a gated-fusion model for integrating inputs.

G = f(σ(concat(mp(xa),mp(xl))))

output = concat(xa ⊙G, xl ⊙ (1−G))
(5)

where G ∈ R1×d is the gated vector, and mp denotes mean-
pooling (MP). The conventional method applies MP across the
time dimension before fusion overlooked temporal dynamics.
To overcome this limitation, we introduce a temporal-aware
gated fusion model to combine SA and CA outputs:

Ga = f(σ(concat(sa, ca)))

Gl = f(σ(concat(sl, cl)))

outputa = concat(sa ⊙Ga, cl ⊙ (1−Ga))

outputl = concat(sl ⊙Gl, ca ⊙ (1−Gl))

(6)

Let f denote the transformation layer that maps the gate vector
to the same dimension with ca and cl, and σ is the sigmoid
activation function. G ∈ Rt×d is the learned gated vector, and
⊙ denotes element-wise product. The proposed temporal-aware
gated fusion enable our model to retains temporal dynamics of
each frame of u and each subword of t. Finally, we concat
outputa and outputl for SER.

LE = CE(concat(mp(outputa),mp(outputl)), Y ) (7)

where Y is the emotion label.

3. Experimental Setup
3.1. Database

In this study, we use the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) dataset [22], which contains 12 hours of

audio, video, facial motion data, and textual transcriptions, to
evaluate the proposed methods. Ten American English speakers
record five speaker-independent dyadic sessions, and each ses-
sion is performed by two speakers (one male and one female)
with either a series of scripted or improvisational scenarios. We
use the data with high agreement of categorical emotion label
and implement the common practice of merging “happy” and
“excited” into one emotion class titled “happy” [1, 23, 24, 25],
resulting in 5,531 utterances with four emotions: happy (1,636),
sad (1,084), angry (1,103), and neutral (1,708). The evaluation
criteria are unweighted accuracy (UA) and weighted accuracy
(WA). We follow the common practice [1, 26, 27] and report the
performance of 5-fold speaker-independent cross-validation.

3.2. Experimental settings

We implemented our proposed models with the PyTorch frame-
work and the Huggingface Transformers repository [28]. We
use HuBERT-large [29] as the acoustic feature extractor, which
is pretrained with 60,000 hours of Libri-Light. This pretrained
model consists of 7 CNN layers to transform the raw wave-
form into latent representations and 24 Transformer layers to
learn the linguistic information from speech. The semantic fea-
ture extractor used in this work is BERT-base [30], which is
pretrained on BooksCorpus and the text passages in English
Wikipedia. This model consists of 12 Transformer layers to
learn the semantic embedding from the textual input. The di-
mensions of the hidden layers d for HuBERT-large and BERT-
base are 1024 and 768, respectively. For arbitrary length in-
puts of both HuBERT and BERT, we applied sentence padding
within each mini-batch. Throughout the training process, Hu-
BERT is first finetuned with SER and ASR. Then, we froze
the CNN layers in HuBERT and finetuned the Transformers in
HuBERT and BERT simultaneously for SER while keeping the
ASR solely on HuBERT. The learning rate is set as 10e-5, and
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Table 2: Comparison of information interaction modules.

Model UA WA

Self-attention 78.10 77.58
/w gated fusion 78.22 78.37

Cross-modal attention 78.27 78.03
/w gated fusion 78.39 78.21

CmGI 79.62 79.50
w/o temporal gated fusion 78.85 78.54

the mini-batch size was 2 with a gradient accumulation of 8.
The weight parameter α is 0.1 for ASR and SER.

4. Results and Analysis
4.1. ASR and semantic information for SER

To investigate the effect of semantic information learned from
ASR prediction, we first evaluated the proposed information ex-
traction module (without the information interaction part) with
previous approaches.

As shown in Table 1, when only an acoustic feature extrac-
tor is used, the performance of SER exhibits a 4.52% improve-
ment in UA when ASR is incorporated (compared Exp.–1 with
Exp.–2). This observation is in line with previous works [14].
In Exp.–3 and –4, the hidden representation of the ASR model
was incorporated to improve SER. However, the improvement
is not significant due to the limited ASR performance of LSTM-
based models on emotional datasets. Exp.–5 [20] was the first
work that encoded emotional information from ASR prediction
and demonstrated the benefit of semantic feature encoding even
with high WER. In Exp.–6 [18], BERT was used to learn the
emotional semantic information from the ASR prediction. They
utilized a pretrained SSL model and achieved better ASR per-
formance. However, the overall performance of their approach
is lower than in Exp.–5 even with better WER. While Exp.–
5 explicitly trained the acoustic feature extractor before intro-
ducing the semantic feature extractor, Exp.–6 used single-stage
training for both feature extractors. This indicates that finetun-
ing HuBERT for ASR before finetuning BERT for semantic ex-
traction is crucial. We first train the HuBERT module for SER
and ASR. Then, both feature extractors are trained simultane-
ously for SER. Moreover, we use the ground-truth transcription
to train the semantic feature extractor. These training schemes
ensure that our system outperformed Exp.–6 for more than 2%
on WA. Moreover, the proposed information interaction module
improved more significantly over previous systems, which will
be discussed in the next section.

Upon comparing Exp.–8 with Exp.–1-7, it is observed that
current systems can extract more discriminative emotional in-
formation from speech than text. As depicted in Table 1, emo-
tion recognition results using text or multimodal inputs are also
provided. Comparing Exp.–7 and Exp.–10, the information ex-
traction system achieved comparable performance to the mul-
timodal approach using only speech input. Lastly, employing
ASR in the acoustic feature extraction process enhances emo-
tion recognition in multimodal systems (Exp. –9 vs. Exp. –10),
as embedding linguistic information into the extractor improves
feature extraction and benefits the final decision-making.

Table 3: Comparsion results with previous SER systems.

Approach Year UA WA

Pepino et al. [11] 2021 67.20 -
Santoso [20] 2021 75.90 76.10
Zou et al. [31] 2022 71.05 69.80
Ioannide et al. [32] 2023 - 74.32
Kyung et al. [33] 2023 76.30 75.10
Gao et al. [34] 2023 76.10 74.94

Ours - 79.62 79.50

4.2. Evaluation of the proposed CmGI

In our experimental results in Table 2, we evaluate the perfor-
mance of the proposed CmGI module.

The results demonstrate that although cross-modal atten-
tion outperforms self-attention by leveraging inter-modal inter-
actions, its effectiveness is limited. Moreover, the integration
of the traditional gated fusion mechanism showed minimal im-
provement, primarily due to its inability to learn the temporal
dynamics within the input features. On the other hand, our
CmGI module incorporates a temporal-aware gated fusion net-
work, which preserves the time dimension of input features dur-
ing fusion. This allows it to maintain the temporal dynamics of
input features and better handle modality incongruity. Com-
pared to the conventional gated fusion model combined with
cross-modal attention, our method achieved a 1.35% absolute
improvement in UA.

4.3. Comparison with existing SER approaches.

In this section, we benchmark the performance of the proposed
approach against existing representative studies that reported
using 5-fold cross-validation on the IEMOCAP. Table 3 pro-
vides a comparative summary. Our approach outperforms re-
cent studies by more than 3.32% and 3.40% on UA and WA,
respectively. The results demonstrate the superiority of our pro-
posed multi-level information extraction and interaction system.

5. Conclusion and Future Work
We have proposed a novel SER system using only speech in-
put. Firstly, the system encodes semantic features from the
text prediction from ASR, ensuring the model explicitly extracts
the acoustic and semantic information using only speech in-
put. Secondly, the proposed cross-modal gated interaction mod-
ule can effectively learn the complementary information from
acoustic and semantic features and mitigate the impact of ASR
error in SER by a temporal-aware gated fusion model. Finally,
the comparison with existing speech-based approaches showed
that our proposed system significantly outperformed state-of-
the-art results. Future work will explore multi-attribute learning
from speech, such as gender, to enhance feature encoding by
incorporating additional emotion-related information into our
system.
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