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Abstract

Speech recognition under reverberant condition is a difficult
task. Most dereverberation techniques used to address this prob-
lem enhance the reverberant waveform independent from that
of the speech recognizer. In this paper, we improve the con-
ventional Spectral Subtraction-based (SS) dereverberation tech-
nique. In our proposed approach, the dereverberation param-
eters are optimized to improve the likelihood of the acoustic
model. The system is capable of adaptively fine-tuning these
parameters jointly with acoustic model training. Additional op-
timization is also implemented during decoding of the test ut-
terances. We have evaluated using real reverberant data and ex-
perimental results show that the proposed method significantly
improves the recognition performance over the conventional ap-
proach.
Index Terms: Dereverberation, Robust ASR

1. Introduction
Reverberation is a phenomenon caused by overlapping of sig-
nals due to reflection attributed by room environment.This de-
grades the performance of distant-talking speech recognition
applications. Thus, it is imperative to minimize its effect. We
have proposed a dereverberation approach based on multi-band
Spectral Subtraction (SS) [1][2][3]. This method employs SS
similar to that steered by multi-step linear prediction [4] by re-
moving only the late components of the reverberant speech sig-
nal. This approach [1][2][3] has two issues. First, the dere-
verberation parameters i.e. the multi-band coefficients are op-
timized using Minimum Mean Square Error (MMSE) criterion
which is inclined in optimizing the effect of dereverberation in
the waveform level. Typically, this is a speech enhancement ap-
proach which improves the quality of the signal prior to acous-
tic modeling and recognition. Secondly, it requires room im-
pulse response (RIR) measurement which is constrained to the
condition of the specific room. Although RIR measurement is
effective, physical measurement is a lengthy and complicated
process [5].

In this paper we address these problems by modifying the
optimization criterion to directly optimize the likelihood of the
recognizer instead of mere waveform enhancement. In addi-
tion, we embed the optimization process in the acoustic model
training. As a result, the dereverberation parameters are up-
dated together with the acoustic model. This kind of approach,
where front-end speech processing is optimized for recognition
is shown to be effective in microphone arrays [6][7] and in Vo-
cal Tract Length Normalization (VTLN) [8][9][10]. Moreover,
we remove the dependency of the approach to the RIR measure-
ment. A synthetic RIR generator which estimates the reverber-
ation time T60 based on the likelihood is employed. Unlike the
RIR measurement used in the conventional approach [1][2][3]

requiring complicated procedures [5], the proposed RIR estima-
tion only requires few arbitrary speech utterance spoken inside
the reverberant room. This is used to estimate the RIR which
is similar to that of [11]. Speech recognition experiments using
real reverberant recording and synthetically generated reverber-
ant data show improvement of recognition performance of the
proposed method over the conventional MMSE approach.

The organization of the paper is as follows; in section 2, we
show the overview of the multi-band SS as a dereverberation
scheme. In section 3, we present the proposed optimization of
dereverberation parameters during acoustic model training fol-
lowed by the fast optimization during decoding in section 4. In
section 5, we discuss the experimental set-up which includes
the automatic RIR generation. Experimental results are given
in section 6, and we will conclude this paper in section 7.

2. Spectral Subtraction-based
Dereverberation

In this section we outline the conventional dereverberation tech-
nique based on multi-band SS [1][2][3]. The reverberant speech
signal is modeled as

x(n) = xE(n) + xL(n), (1)
where xE(n), xL(n) are the uncorrelated early and late re-
flection components of the reverberant signal x(n). If we de-
note s(n) as clean speech, and the measured room impulse as
h(n) = [hE(n), hL(n)] where early components hE(n) and
late components hL(n) of the whole sample h(n) are identified
in advance, Eq (1) can be written as,

x(n) = hE ∗ s(n) + hL ∗ s(n). (2)

In the SS-based dereverberation, we are only interested in
recovering xE(n) from x(n). Thus, we use spectral subtrac-
tion to remove the effect of xL(n). Theoretically, it is possi-
ble to remove entirely the effect of the whole impulse response
h(n), but robustness to the microphone-speaker location can-
not be achieved since the early components hE(n) have high
energy and is dependent on the distance between the micro-
phone and speaker as explained in [1] [2][3]. In the multi-band
SS approach, the effect of xE(n) is addressed through Cep-
stral Mean Normalization (CMN), which can be handled by the
recognizer as it falls within the frame. Thus, only xL(n) is re-
moved through the multi-band SS as its effect falls outside the
frame in which the recognizer operates. The power spectra of
xE(n) can be obtained through the multi-band SS,

|XE(f, τ )| =

8>><
>>:

|X(f, τ )|2 − δ(m)|XL(f, τ )|2

if |X(f, τ )|2 − δ(m)|XL(f, τ )|2 > 0

β|XL(f, τ )|2 otherwise

(3)
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Figure 1: Block diagram of the proposed optimization technique in the acoustic training phase

for f ∈ Bm where Bm is the corresponding band, with β the
flooring coefficient. |X(f, τ )|2 and |XL(f, τ )|2 are the power
spectra of the reverberant signal and its late reflection, respec-
tively. The values of δδδ coefficients are derived through an offline
training which minimizes the error of the estimate |XL(f, τ )|
under the MMSE criterion. Details in the choice of the number
of bands, the values of δδδ coefficients (through offline training),
and the effective identification of the late components of the im-
pulse response hL(n) are discussed in [1] [2][3].

3. Optimization of Dereverberation
Parameters for Acoustic Modeling

We present two methods that optimize the dereverberation pa-
rameters jointly with acoustic modeling.

3.1. Batch Optimization Method

The proposed optimization of the multi-band SS is shown in
Fig. 1. We opt to optimize each band sequentially starting
from the first band m = 1 to m = M . The band coefficient
to be optimized is allowed to change within a close neighbor-
hood n� where n = ±1...N and � = 0.02. The reverberant
observation data xxx is dereverberated using the multi-band SS.
The rest of the bands are fixed to the MMSE-based estimates
except for the band to be optimized. Thus, if the band to be
optimized is band m = 1, we generate a set of coefficients
δδδ(1, n) = [ δ(1)MMSE + n �, δ(2)MMSE, δ(m)MMSE

, ..., δ(M)MMSE], and execute SS using the generated co-
efficients. The resulting data xE(δ(1, n)) are evaluated us-
ing the HMM-based acoustic model which is trained with data
processed with MMSE-based SS parameters, denoted as λ =
λMMSE . A likelihood score is computed for each of the data
processed with different SS conditions. Based on this result,
δ(m)opt that has the corresponding highest likelihood score
is selected. The whole process from SS to likelihood evalu-
ation is applied to all M bands independently. After all of
the bands are optimized, the set of optimal SS coefficients
[δ(1)opt, ..., δ(M)opt] is used to process the reverberant data
and proceed to acoustic model training. The resulting acoustic

model λopt will be used in the actual recognition.

3.2. Incremental Optimization Method

We extend the above batch optimization method . The ad-
ditional process introduced is shown in dashed lines in Fig 1.
Right after the optimal coefficient of band 1 is found, the acous-
tic model is re-estimated using the updated SS parameters. The
newly re-estimated model λ1 is then used in the likelihood
evaluation block for band 2, and this process is iterated until
δ(M)opt is found for the M th band. This approach, referred to
as incremental optimization method , has the same principle
with the batch method , except for the incremental updates of
the HMM parameter λ in every band. In the batch method , we
fixed λ = λMMSE all throughout the bands. The incremen-
tal re-estimation allows us to treat each band interdependently
in a sequential manner as opposed to the batch optimization

method where each band is treated independently.

4. Fast Multi-band Dereverberation
Parameter Selection during Decoding

Further optimization is implemented during actual recognition.
In parallel with the acoustic model training in section 3, a
Gaussian mixture model μ with 64 components is trained us-
ing the dereverberated data processed with the optimal multi-
band weights. This is a text-independent model which only
captures the statistical information pertaining to the optimized
multi-band dereverberation parameters. The optimization starts
with the dereverberation of the actual reverberant test utterance
with the multi-band SS. The processed utterance is evaluated
with each choice of scale parameters using μrev . Subsequently,
the scale factor that leads to the best likelihood is selected and
used to dereverberate the test utterance prior to input to ASR.
We note that the GMM is only used for scale factor selection,
and since this a very simple model as opposed to HMM, the de-
coding is fast and practical. As the reverberant condition is not
guaranteed to be constant, the additional optimization during
recognition helps minimize the mismatch between the reverber-
ant conditions during training and testing.
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Figure 2: Room impulse response approximation

Table 1: Recognition Results: C1C1C1 Real recording, C2C2C2 clean convolved with measured RIR, C3C3C3 clean convolved with generated RIR
Methods C1C1C1 200msec C1C1C1 600msec C2C2C2 200msec C2C2C2 600msec C3C3C3 200msec C3C3C3 600msec
(A) No processing (clean model) 68.6 % 21.4 % 68.9 % 22.7 % 69.2% 23.1%
(B) No processing (reverb model) 75.4 % 32.1 % 76.4 % 35.0% 58.2% 36.5%
(C) Multi-LPC 79.2 % 51.6 % 79.8 % 52.8% 81.7% 53.2%
(D) MMSE (conventional) 80.180.180.1 % 54.254.254.2% 81.781.781.7 % 55.955.955.9 % 82.482.482.4 % 64.564.564.5%
(E) Batch (training only) 81.3 % 62.4% 82.2 % 63.2 % 82.4 % 64.1 %
(F) Incremental (training only) 82.4 % 63.7% 82.6 % 64.6 % 83.3 % 65.6 %
(G) Batch (training/decoding) 83.1 % 64.2% 83.4 % 65.8 % 84.1 % 66.2 %
(H) Incremental (training/decoding) 84.584.584.5 % 65.765.765.7% 85.085.085.0 % 67.967.967.9 % 85.285.285.2 % 68.368.368.3 %

5. Experimental Set-up
5.1. Training and Testing Data

The training database is from the Japanese Newspaper Article
Sentence (JNAS) corpus. The open test set is composed of
200 utterances. Recognition experiments are carried out on the
Japanese dictation task with 20K-word vocabulary. The lan-
guage model is a standard word trigram model. We experi-
mented using two reverberant conditions: T60=200 msec and
T60=600 msec. Reverberant training data were made by con-
volving the clean database with the generated RIR discussed in
this section. Two sets of reverberant test data were recorded
in a room with known reverberation time : T60=200 msec and
T60=600. Thus, we used actual reverberant data for recognition
evaluation. In this experiment we use the total number of bands
M = 5 which is consistent to that of the former work [1][2][3].

5.2. Estimating RIR Using Maximum Likelihood

The HMM represents a short speech segment with a duration of
30-100 msec. Each state captures information about a distribu-
tion of spectral parameters. With this perspective, the HMMs’
description of a speech is of low resolution compared to the RIR
with respect to time and frequency. Thus, for speech recogni-
tion application, it may be sufficient to use RIR estimate instead
of the accurate RIR [11]. Existing studies suggest that ideally,
the multiple reflections of sound can be described by a decaying
acoustical energy, and the decay is best modeled by an exponen-
tial function [12]. Thus, the energy of the RIR is given as:

h
2(n) = e

(6 ln (10)/T60) n
, (4)

where n is the discrete time sample, and T60 is the reverberation
time. Prior to RIR estimation, we trained a single clean GMM
with 64 mixtures and adapted using arbitrary recorded reverber-
ant utterances, resulting to the reverberant-adapted GMM μrev .

In the GMM adaptation, transcriptions of the utterances are not
needed. In our experiment, we used 10 utterances spoken in-
side the rooom. Fig. 2 shows the block diagram in approxi-
mating the RIR. First, the clean speech data are convolved with
the generated RIR of variable T60 to generate reverberant data
sets xT601 ...xT60K . Then, the likelihood scores are evaluated
against μrev , and the subsequent T60 that results to the highest
likelihood score is selected.

6. Experimental Evaluation
6.1. Recognition Performance

The basic recognition performance of the proposed method is
shown in Table 1. In this table, we compare the performance of
the proposed method against the baselines and the conventional
approach MMSE. T60 are 200 msec and 600 msec respectively.
The test data are divided into three categories C1C1C1,C2C2C2 and C3C3C3.
In C1C1C1 we use the real reverberant data, recorded in a room with
known T60. C2C2C2 is a synthetically generated data, derived from
filtering the clean utterance with measured RIR using the tech-
nique [5]. Lastly, C3C3C3 is another synthetically generated rever-
berant test data, which is derived from filtering the clean utter-
ance with the automatically generated RIR based on the likeli-
hood as discussed in Section 5.
In Table 1, (A) is the performance when the reverberant test data
is not processed at all (no dereverberation) using a clean acous-
tic model. (B) is the result when using a reverberant matched
model. (C) is the performance of a different reverberation ap-
proach [4] where the processing of both the training and testing
data are matched. (D) is the performance of the conventional
approach when both the training and test data are dereverber-
ated using the MMSE-based SS. In (D) the processing of both
training and testing data requires actual RIR measurement. (E)
and (F) are the results of the proposed optimization for the batch
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Figure 3: Comparison of the proposed method and conventional method (MMSE) in mis-matched conditions

and incremental methods, respectively. It is confirmed that
the proposed front-end dereverberation optimization consider-
ing acoustic likelihood is more effective than the conventional
MMSE-based method. And the incremental model update per-
forms better than the batch training. In (G) and (H), we show
that the performance of the system is further improved when
optimization is also applied in the decoding process. Thus, op-
timizing dereverberation in both the acoustic modeling phase
and decoding phase result in a synergetic effect in improving
recognition accuracy. The performance of the proposed method
is consistent for both real recording and synthetic reverberant
test data for all of the three categories C1C1C1-C3C3C3. We note that
for the results (E)-(H) we used the automatic generation of RIR
described in Section 5 as opposed to the conventional approach
in which RIR was physically measured in the room [1] [2] [3].

6.2. Test for Robustness

A variation in physical arrangements inside the room can cause
the reverberant condition to vary. As mentioned earlier, the
reverberant condition cannot be assumed to be the same dur-
ing training and testing. To investigate the robustness of the
methods, we simulated a mismatch in reverberant conditions
between the the training and testing data. Synthetically rever-
berant test sets with varying T60 are generated using the pro-
cess described in section 5. It is apparent that the change in
the recognition performance from (matched) to (mismatched)
is much smaller under the proposed method than in the conven-
tional approach using MMSE criterion as shown in Fig. 3. Thus
the proposed method is robust. Although we used a synthetic
reverberant data in Fig. 3, we note that we achieved consistent
performance of the proposed method when tested to both real
and synthetic reverberant data in Table 1.

7. Conclusion
We have presented a front-end dereverberation technique which
is optimized based on the likelihood of the speech recognizer.
The method is applied both in the acoustic model training phase
and the actual decoding phase. Both effects are confirmed, re-
alizing significantly better performance than the conventional
MMSE-based method which optimizes the parameters indepen-
dent of speech recognition. We have also removed the depen-
dency of the RIR measurement used by the conventional ap-
proach. By using an arbitrary utterance spoken inside the room,

we can generate the RIR based on likelihood. Moreover, the
recognition experiments using both real and synthetic reverber-
ant test data show consistent improvement in speech recognition
performance.
Currently, the optimization during recognition is limited to se-
lecting the dereverberation parameters using the test utterance.
In our future works, we will expand the system to incorporate
fast adaptation techniques to use the test utterance in adapting
the model and not just for parameter selection.
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