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ABSTRACT
This paper describes a statistical post-processing method for auto-
matic singing transcription that corrects pitch and rhythm errors in-
cluded in a transcribed note sequence. Although the performance of
frame-level pitch estimation has been improved drastically by deep
learning techniques, note-level transcription of singing voice is still
an open problem. Inspired by the standard framework of statistical
machine translation, we formulate a hierarchical generative model of
a transcribed note sequence that consists of a music language model
describing the pitch and onset transitions of a true note sequence and
a transcription error model describing the addition of deletion, inser-
tion, and substitution errors to the true sequence. Because the length
of the true sequence might be different from that of the observed
transcribed sequence, the most likely sequences with possible differ-
ent lengths are estimated with Viterbi decoding and the most likely
length is then selected with a sophisticated language model based on
a long short-term memory (LSTM) network. The experimental re-
sults show that the proposed method can correct musically unnatural
transcription errors.

Index Terms— Singing transcription, music language models,
statistical modeling, symbolic music processing

1. INTRODUCTION

Automatic singing transcription (AST) refers to estimating a sym-
bolic musical score from singing voice and has been considered
to be an important task from the technical and practical points of
view [1–4]. In AST, pitch errors, rhythm errors, and extra/missing
note errors are unavoidable because the singing voice has compli-
cated pitch trajectories. In this study, we tackle a new research topic
that aims to correct such errors included in musical scores estimated
by an AST method.

To reduce transcription errors in AST, music language mod-
els that represent a probability distribution of musical scores have
often been used with audio transcription models [1, 2, 5]. Given
that a more typical musical score has a higher generative proba-
bility, AST methods using both language and transcription models
are expected to improve the musical naturalness of estimated scores.
Such language models, for example, include a Markov model rep-
resenting the transitions of semitone-level pitches [1] and a metrical
Markov model representing the transitions of metrical onset posi-
tions [2]. Nonetheless, the estimated score still includes a number of
musically-unnatural errors because language models are considered
to have limited impact when they are used in combination with tran-
scription models. This calls for a post-processing step that performs
error correction in the purely symbolic domain.

This work is supported in part by JST ACCEL No. JPM-JAC1602 and
JSPS KAKENHI Nos. 16H01744, 19K20340, 19H04137, and 20K21813.
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Fig. 1. The overview of our statistical error correction method based
on candidate estimation and selection.

In this paper, we propose a statistical error correction method
that estimates multiple candidates of a true note sequence from a
transcribed sequence including errors and then selects the most likely
one (Fig. 1). More specifically, we formulate a hidden Markov model
(HMM) that consists of a music language model representing the
generative process of a true note sequence and a transcription error
model representing that of a transcribed note sequence from the true
sequence. Note that the lengths of the true and transcribed sequences
might be different because the transcription error model represents
the basic editing operations (i.e., insertion, deletion, and substitu-
tion) for a true note sequence. Given a transcribed note sequence, the
most likely key is estimated and the most likely true note sequences
with specified lengths are then estimated with Viterbi decoding. Fi-
nally, the note sequence with the most likely length is selected with
a sophisticated language model based on a long short-term memory
(LSTM) network [6–8].

The main contribution of this paper is to build a statistical error
correction framework based on a music language model and a tran-
scription error model for AST in the same way as the statistical ma-
chine translation framework based on a target language model and a
target-to-source back-translation model [9, 10]. Another noticeable
contribution is to propose a hierarchical HMM as the transcription
error model for dealing with the editing operations from the proba-
bilistic generative point of view. Our model consists of an insertion-
deletion model for alignment between true and transcribed note se-
quences with different lengths and a substitution model for modifi-
cation of the pitches and onset positions of notes. Our method is
thus more sophisticated than the basic HMM-based post-processing
method that can correct only substitution errors.

2. RELATED WORK

This section reviews the use of language models for music and speech
applications. Melody style conversion aims to change only the style
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Fig. 2. The music language model that represents the generative
probability of a true note sequence Z given a key S and a length M .

of a note sequence while preserving the original content. Inspired by
the statistical machine translation framework [9], a statistical melody
style conversion method was proposed by integrating music lan-
guage models of individual styles and conversion models between
different styles, where these models can be learned from existing
melodies in an unsupervised manner [11]. The language model of a
target style is based on a Markov model that represents the genera-
tive process of a target-style note sequence. The conversion model
between target and source styles represents the back-translation pro-
cess of a source-style note sequence from a target-style sequence.
Given a source-style sequence, the most likely target-style sequence
can be estimated with Viterbi decoding.

In this study, we take the same approach to error correction in
AST. Specifically, we integrate a music language model represent-
ing the generative process of a true note sequence and a transcription
error model representing the generative process of a transcribed se-
quence from a true sequence. While the conversion model proposed
in [11] does not allow the number of notes to be changed, i.e., deals
with only substitutions, our transcription error model deals with in-
sertions, deletions, and substitutions.

In automatic speech recognition (ASR), rescoring of N-best can-
didates estimated by an ASR method has often been used [12–14],
where a BERT-based language model can be used for computing the
generative probabilities of candidate word sequences [12]. Such a
post-processing method based on a complicated yet powerful lan-
guage model is useful, especially when the language model is hard
to integrate with the inference process of an ASR system. In this
study, we take the same approach to error correction in AST. Specif-
ically, true sequence candidates with different lengths are estimated
with a Markov language model and the best candidate is selected
with an LSTM language model.

3. PROPOSED METHOD

We formulate a hierarchical generative model of a transcribed note
sequence consisting of a Markov language model and a transcription
error model. Given a transcribed sequence, we estimate a key with
the language model and infer true sequence candidates with different
lengths via Viterbi decoding. Finally, we select the best candidate by
rescoring the candidates with the LSTM language model.

3.1. Problem specification
Our goal is to estimate a true note sequence Z={zm=(zpm, z

o
m)}Mm=1

from an erroneous transcribed sequence X = {xn = (xpn, x
o
n)}Nn=1,

where M is the length of Z, N is the length of X, each note xn

is represented by a pair of xpn ∈ {−1, 0, · · · , 35} indicating an
extended pitch class in three octaves (−1 indicates the rest) and

xon ∈ {0, · · · , 15} indicating a 16th-note-level relative position in
each bar, and zn is defined in the same way. In this paper, the input
sequence is assumed to have the time signature of 4/4 and include no
key changes. The extended pitch-class sequence {xpn}Nn=1 is com-
puted from a MIDI note number sequence {x̃pn}Nn=1 as follows:

xp1 = x̃1 mod 36, (1)
xpn = xpn−1 + (x̃pn − x̃pn−1) mod 36. (2)

This representation is convenient to capture the relative pitch dynam-
ics of a sung melody within three octaves.

3.2. Model formulation

We formulate a joint model of a transcribed note sequence X and a
true note sequence Z. Let M and S be the latent length and key of
Z, where a key S ∈ {0, . . . , 11} indicates {C,C#, . . . , B}. Let
Y = {yn}Nn=1 be a latent index sequence that aligns Z with X,
where yn ∈ {1, · · · ,M} indicates that xn is derived from zyn , i.e.,
ZY , {zyn}Nn=1 corresponds to {xn}Nn=1 one by one. Using these
latent variables, the full probabilistic model is given by

p(X,Y,Z, S,M) = p(X,Y|Z,M)p(Z|S,M)p(S,M), (3)

where p(X,Y|Z,M) and p(Z|S,M) are the transcription error mo-
del and the music language model, respectively, and p(S,M) is a
prior distribution on the key S and the length M . Note that we as-
sume p(X,Y|Z, S,M) = p(X,Y|Z,M) in (3).

3.2.1. Music language model

The music language model p(Z|S,M) in (3) gives the generative
probability of a true note sequence Z given a key S and a length M
(Fig. 2). It is based on a standard autoregressive model as follows:

p(Z|S,M) = p(z1|S)

M∏
m=2

p(zm|z1:m−1, S), (4)

where the notation i:j indicates a set of indices from i to j. In this
paper, (4) is implemented as a first-order Markov model or an LSTM
model.

In the first-order Markov model, each term of (4) is represented
with a categorical distribution as follows:

p(z1|S) = Categorical(z1|πS), (5)
p(zm|z1:m−1, S) = p(zm|zm−1, S)

= Categorical(zm|φS
zm−1

), (6)

where πS,{πS
(zp,zo)}

35,15
zp=−1,zo=0 is a set of the initial probabilities

over the possible combinations of 37 pitches (including rest) and 16
onset positions under the key S, φS

z,{φS
(zp,zo),(ẑp,ẑo)}

35,15
ẑp=−1,ẑo=0

is a set of the transition probabilities from a note z = (zp, zo) under
the key S. For standard notes z = (zp, zo) with zp ≥ 0, we assume
the tonic invariance (transposition symmetry) as follows:

πS
(zp,zo) = π0

(|zp−S|36,zo), (7)

φS
(zp,zo),(ẑp,ẑo) = φ0

(|zp−S|36,zo),(|ẑp−S|36,ẑo), (8)

where |i− j|k is the modulus of |i− j| with respect to k.
In the LSTM model, each term of (4), i.e., the categorical distri-

bution of zm, is recursively predicted at each time step m by using
an LSTM network. In this paper, the LSTM network is trained from
existing melody note sequences that are transposed into the C ma-
jor or A minor key. To evaluate the generative probability of a note
sequence Z under an arbitrary key S, Z is thus transposed to the C
major or A minor key and fed to the LSTM network.

257



!"# !"$ !"% !"& !"'!"(
Inserted and deleted

sequence )*

+, +- +. +/ +0+1Transcribed sequence 2

1 2 2 3 75

!, !- !. !/ !0 !3!1

Index sequence *

True sequence )

Insertion 
Deletion

Substitution

Fig. 3. The transcription error model consisting of the insertion-
deletion model that aligns a true sequence Z with a transcribed se-
quence X through an index sequence Y and the substitution model
that modifies an aligned sequence ZY = {zyn}Nn=1 to X.

3.2.2. Transcription error model

The transcription error model p(X,Y|Z,M) in (3) gives the gen-
erative probability of a transcribed note sequence X and an index
sequence Y from a true sequence Z and a length M (Fig. 3). It is
defined as a latent variable model given by

p(X,Y|Z,M) = p(X|Y,Z)p(Y|M), (9)

where p(X|Y,Z) is the substitution model that represents the gener-
ative probability of a transcribed sequence X from a sequence of the
same length ZY specified by a true sequence Z with an alignment
Y, and p(Y|M) is the insertion-deletion model that represents the
probability distribution over all possible alignments between two se-
quences of lengths M and N (|X| = |Y| = N and |Z| = M ).

Assuming that pitch and onset substitution errors happen inde-
pendently at any position of the aligned sequence ZY , the substitu-
tion model p(X|Y,Z) in (9) is factorized as follows:

p(X|Y,Z) =

N∏
n=1

p(xn|zyn)

=

N∏
n=1

p(xpn|zpyn)p(xon|zoyn), (10)

where p(xpn|zpyn) and p(xon|zoyn) are the pitch and onset substitution
probabilities, respectively. For xp, zp ≥ 0, we assume that the pitch
and onset substitution probabilities only depend on the differences
of the pitches and the onset positions respectively as follows:

p(xpn = xp|zpyn = zp) = χp
|xp−zp|16 , (11)

p(xon = xo|zoyn = zo) = χo
|xo−zo|36 , (12)

p(xpn = −1|zpyn = −1) = χp
−1,−1, (13)

p(xpn = −1|zpyn = zp) = χp
zp,−1, (14)

where χp = {χ∆p}35
∆p=0 and χo = {χ∆o}15

∆o=0 are the pitch
and onset substitution probabilities, respectively, and χp

−1,−1 and
{χp

zp,−1}35
zp=0 are hyperparameters related to the rest note.

The insertion-deletion model p(Y|M) in (9) represents the con-
ditional probability of an index sequence Y given the true lengthM .
It is defined as a first-order left-to-right Markov model as follows:

p(Y|M) = p(y1|M)

N∏
n=2

p(yn|yn−1,M). (15)

This model is parameterized by an insertion probability ηins and a
deletion probability ηdel. For m ≤ M , the initial and transition
probabilities are defined as follows:

p(y1 = 2|M) = ηdel, (16)

p(yn = m|yn−1 = m,M) = ηins, (17)
p(yn = m|yn−1 = m− 2,M) = ηdel. (18)

When a decent AST method is used, it is natural to enforce the se-
quential alignment (prohibit the cross alignment) between Z and X
and more than two successive notes are unlikely to be deleted at
once. In addition to the left-to-right property of this Markov model,
we thus consider the following constraints:

y1 ∈ {1, 2}, (19)
yn − yn−1 ∈ {0, 1, 2}, (20)

yN ∈ {M − 1,M}. (21)

3.3. Model training
The music language models are trained using existing melody note
sequences including no errors with key annotations. These sequences
can be transposed into C major or A minor. The Markov language
model is trained by maximum likelihood estimation and the LSTM
language model is trained such that the sequential predictive proba-
bility of the next note given the history of notes is maximized.

The probabilities of the transcription error model χp, χo, ηins,
and ηdel are calculated from the alignment obtained by the method
of [15] between transcribed and true note sequences. We set the
rest-to-note substitution probability 1− χp

−1,−1 and the note-to-rest
substitution probabilities {χp

zp,−1}35
zp=0 to zero because these prob-

abilities cannot be calculated from the alignment where the rests are
ignored and these substitutions can be represented as the combina-
tions of the deletion, insertion, and note-to-note substitutions.

3.4. Error correction as Viterbi decoding
We first estimate the key S assuming that the key of X is the same
as the key of Z as follows:

S∗ = arg max
S

pMarkov(Z = X|S,M = |X|). (22)

Given the key S∗, we then estimate the index sequence Y∗M and the
true sequence Z∗M for all possible M as follows:

Y∗M ,Z
∗
M = arg max

Y,Z
p(X,Y,Z|S∗,M). (23)

We finally select the most likely true note sequence Z∗M∗ as follows:

M∗ = arg max
M

1

M
log pLSTM (Z∗M |S∗,M), (24)

where we use the LSTM language model.
To solve (23), we interpret p(X,Y,Z) as an ordinary HMM of

length N consisting of X = {xn}Nn=1 and ZY = {zyn}Nn=1 as
observed and latent variables, respectively, as follows:

p(X,Y,Z) = p(X|Y,Z)p(Y,Z), (25)

where p(X|Y,Z) is given by (10) and p(Y,Z) is factorized as

p(zy1 , y1) =

{
p(z1)p(y1) (y1 = 1),

max
z1
{p(z1)p(z2|z1)}p(y1) (y1 = 2),

p(zyn+1 , yn+1|zyn , yn) =
δzyn+1

,zyn p(yn+1|yn) (yn+1 = yn),

p(zyn+1 |zyn)p(yn+1|yn) (yn+1 = yn + 1),

max
zyn+1

{p(zyn+1 |zyn+1)p(zyn+1|zyn)}p(yn+1|yn)

(yn+1 = yn + 2).

The most likely sequence Z∗Y can be estimated efficiently with Vi-
terbi decoding.
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Table 1. Evaluation results [%] (lower E∗ and higher Rdn are better).
Ep Ee Em Eon Eoff Eall Rdn

Transcribed 8.48 17.4 10.9 39.0 31.4 21.4 95.9
Corrected (LSTM) 9.43 15.5 15.0 41.7 31.7 22.7 97.5
Corrected (Markov) 9.95 17.7 12.7 42.0 31.8 22.8 97.3
Corrected (oracle) 9.15 13.3 14.6 39.8 29.4 21.2 97.4
Ground truth - - - - - - 97.1

Table 2. Cross entropies [bits/note] (lower is better).
Markov LSTM

Transcribed 5.89 5.62
Corrected (LSTM) 4.50 4.51
Ground truth 4.18 4.63

4. EVALUATION

We report experiments conducted to evaluate transcription accuracy
and musical naturalness of the corrected sequences.

4.1. Experimental conditions
For evaluation, we conducted 5-fold cross validation using 60 songs
with the time signature of 4/4 and no key transposition taken from
the RWC Music Database [16]. The note sequences were estimated
by a convolutional neural network followed by an LSTM network.
For each transcribed sequence X of length N , {[rN ] : r ∈ {r̄ −
0.1, . . . , r̄−0.02, r̄, r̄+0.02, . . . , r̄+0.1}} were considered as the
candidates of the true lengthM , where r̄ was the average of ratios of
true lengths to transcribed lengths. The optimal length was selected
by using the LSTM language model or the Markov language model.
We trained these music language models by using the melody scores
of 206 Beatles songs and 328 J-pop songs.

To evaluate the proposed method, we calculated the pitch er-
ror rate Ep, the extra note rate Ee, the missing note rate Em, the
onset-time error rate Eon, the offset-time error rate Eoff , and the
overall error rate Eall [17] by comparing transcribed and corrected
sequences with the ground-truth sequences. The musical naturalness
was evaluated in terms of the rate of diatonic notes Rdn because the
majority of notes should be on a scale. We considered C major scale
{C, D, E, F, G, A, B}, C harmonic minor scale {C, D, Eb, F, G,
Ab, B}, and the other 22 transposed scales. Because detailed key
annotations were unavailable, we used as Rdn the maximum of the
diatonic note rates computed for all scales.

4.2. Experimental results
The experimental results are listed in Table 1. Among the 60 songs,
the proposed method reduced the overall error rateEall for 15 songs.
The overall error rate Eall of the proposed method with the LSTM
language model was lower than that with the Markov language model
only. This indicates the effectiveness of the LSTM language model
in the rescoring step. If the length M was selected for each song so
that the overall error rate of the song was minimized (oracle condi-
tion), Eall of the corrected sequences was reduced to 21.2%, which
was lower than that of the transcribed sequences 21.4%. This showed
the potential of the proposed method for improving the transcription
accuracy. The diatonic note rateRdn of the corrected sequences was
higher than that of the transcribed sequences and was closer to that
of the ground-truth sequences.

The cross-entropies per note obtained by the Markov and LSTM
language models were shown in Table 2. The cross-entropy per note
of the corrected sequences was lower than that of the transcribed
sequences. The higherRdn and the lower cross-entropy of corrected
sequences indicate that the proposed method successfully improved
the musically naturalness in exchange for the slight decrease of the
transcription accuracy (trade-off problem). Three examples of error
correction with the proposed method are shown in Figs. 4, 5, and 6.
In Fig. 4, the proposed method corrected a pitch error and an extra
note error. In Fig. 5, the proposed method deleted extra successive
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Fig. 4. The proposed method corrected a pitch error and an extra
note error (RWC-MDB-P-2001 No.11).icassp_074
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Fig. 5. The proposed method corrected extra note errors, but added
rhythm errors (RWC-MDB-P-2001 No.74).icassp2021_080
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Fig. 6. The proposed method corrected a rhythm error and an extra
note error, but added a pitch error (RWC-MDB-P-2001 No.80).

notes of the same pitch and the corrected sequence has a musically
natural rhythm. In Fig. 6, the pitches of the corrected sequence were
on a scale and were considered to be musically coherent although
the proposed method made a pitch error.

5. CONCLUSION

This paper presented a statistical error correction method as a post-
processing step of AST. Our method is based on an HMM that con-
sists of a Markov language model that generates a true sequence and
a transcription error model that generates an erroneous transcribed
sequence from a true sequence. Given a transcribed sequence, we es-
timate candidate note sequences via Viterbi decoding for all possible
lengths and choose the optimal length based on an LSTM language
model. We found that the corrected sequences were more musically
natural than the transcribed sequences and the proposed method had
potential for improving the transcription accuracy.

In future work, we plan to integrate the LSTM language model
with the transcription error model. We believe that a post-processing
correction method based on a powerful music language model is ef-
fective for AST because transcribed sequences are expected to be
musically natural from the practical points of view1.

1The demo page: https://music-lsmtse.github.io
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