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Abstract
Recently, Conformer has achieved state-of-the-art perfor-

mance in many speech recognition tasks. However, the
Transformer-based models show significant deterioration for
long-form speech, such as lectures, because the self-attention
mechanism becomes unreliable with the computation of the
square order of the input length. To solve the problem, we in-
corporate a kind of state-space model, Hungry Hungry Hippos
(H3), to replace or complement the multi-head self-attention
(MHSA). H3 allows for efficient modeling of long-form se-
quences with a linear-order computation. In experiments us-
ing two datasets of CSJ and LibriSpeech, our proposed H3-
Conformer model performs efficient and robust recognition of
long-form speech. Moreover, we propose a hybrid of H3 and
MHSA and show that using H3 in higher layers and MHSA in
lower layers provides significant improvement in online recog-
nition. We also investigate a parallel use of H3 and MHSA in
all layers, resulting in the best performance.
Index Terms: speech recognition, state-space model, long-
form speech recognition, Hungry Hungry Hippos

1. Introduction
In recent years, Transformer-based models have been widely
used in many machine learning tasks. In automatic speech
recognition (ASR), Conformer [1], which incorporates a convo-
lution layer after self-attention, has shown state-of-the-art per-
formances in many tasks. In these models, multi-head self-
attention (MHSA) allows for a flexible mechanism for capturing
important features with long-term dependency. As it involves
a matrix operation for the combination of all input frames, its
computation is quadratic in the input length, and training and in-
ference become unreliable when the input becomes very long,
resulting in a significant degradation in performance [2].

This problem would be serious when dealing with long-
form speech such as lectures and meetings. Thus, it is a com-
mon procedure to segment the input speech based on a long
pause, but the segmentation becomes difficult in noisy condi-
tions or inappropriate with irregular pauses due to disfluency.
The problem would be critical in end-to-end speech translation,
in which long-term dependency is critical, and the permuta-
tion of words can happen. Therefore, there is a demand for
a sequence-to-sequence encoder-decoder framework that can
handle long-form speech robustly and efficiently [3, 4].

In this context, state-space models (SSMs) have been stud-
ied recently, mainly in the field of natural language processing
(NLP), to achieve high performance with linear-order computa-
tion. Among them, the Structured State Space sequence model
(S4) [5] has been shown to handle long-term dependency effi-
ciently and has been introduced to the Transformer-based ASR

decoder [6]. More recently, Hungry Hungry Hippos (H3) [7]
has been proposed as an extension of S4 and shown to achieve
better performance in many NLP tasks. It realizes a mechanism
similar to self-attention by incorporating SSM into the Linear-
attention model.

In this paper, we present a long-form speech recognition
model based on H3. As a naive implementation, H3 can be
simply used to replace MHSA in Conformer. This model is
named H3-Conformer. We also propose a novel model based
on a hybrid of H3 and MHSA by selectively using either H3 or
MHSA in Conformer encoder layers, which we call Hybrid H3-
Conformer (CH4). Another variation of Parallel CH4, which
uses both H3 and MHSA in parallel in each encoder layer, is
also explored. In experimental evaluations using two datasets
of the CSJ and LibriSpeech, we demonstrate that the proposed
models outperform the conventional Conformer in online long-
form ASR and that using H3 in higher layers is effective, sug-
gesting that H3 is more capable of capturing long-term relation-
ships.

2. Background and Related Work
2.1. State Space Models

SSM is a model that handles long-term dependence efficiently
and robustly by storing the history of time-series data based
on a state-space representation, with HiPPO [8] as a pioneer,
LSSL [9], S4 [5], and other variants. In the state-space rep-
resentation, the following equation defines a mapping from
an input sequence u = (u1, ..., uL) ∈ RL to an output se-
quence y = (y1, ..., yL) ∈ RL via an internal state vector
xt ∈ RN (0 ≤ t ≤ L).

xt = Axt−1 +But

yt = Cxt +Dut

(1)

where, A ∈ RN×N ,B ∈ RN×1,C ∈ R1×N ,D ∈ R1×1. By
setting x0 = 0, the equation (1) is expressed as equation (2).

yk = CAk−1Bu1 + · · ·+CBuk +Duk (2)

Let KL be as follows.

KL(A,B,C) = (CB,CAB, ...,CAL−1B) (3)

Then, y can be expressed as a convolution.

y = SSM(u) = KL(A,B,C) ∗ u+DuL (4)

This eliminates the recursion and speeds up the computation
process. In S4, a representative SSM, the class of A is restricted
to a class of matrices represented by the sum of a diagonal ma-
trix and a low-rank matrix called a Diagonal Plus Low-Rank
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(DPLR) representation. This restriction allows S4 to reduce the
computational complexity of the convolution in the equation (3)
from O(N3L) to O(N + L logL).

S4 is also known for being the first to solve a task called
PATH-X with accuracy better than random guessing in the
Long-Range Arena [10], a benchmark for uniformly evaluat-
ing performance in understanding and processing long-range
dependencies.

2.2. Speech recognition with State Space Models

As a previous study applying SSM to ASR, Miyazaki et al. [6]
introduced the S4 module into the decoder of the Conformer
model. It was shown to mitigate the degradation of the recogni-
tion accuracy for long-form ASR. Meanwhile, Shan et al. [11]
introduced the S4 module into the encoder of the Conformer
model, and improved the accuracy of ASR. However, long-form
ASR was not investigated in this study.

In another study using SSM for ASR, Saon et al. [12] pro-
posed a model in which the depth-wise temporal convolutions
in the Conformer architecture are replaced by Diagonal State
Spaces (DSS) [13].

2.3. Hungry Hungry Hippos (H3)

H3 is a model proposed by Fu et al. [7], which uses SSMs
as feature maps for a linear attention model [14], expecting to
enhance long-term relationships while reducing computational
complexity.

Let the length of the input be L and the query/key/value
tokens be Qi,Ki, Vi ∈ Rd(1 ≤ i ≤ L). The attention function
in general, including softmax attention [15] can be expressed as
follows with the similarity function Sim : Rd × Rd → R

Oi =

∑i
j=1 Sim(Qj ,Kj)Vj∑i
j=1 Sim(Qj ,Kj)

(5)

Linear-attention assumes that Sim can be expressed as
Sim(q, k) = ϕ(q)Tϕ(k) with a certain feature function ϕ.
Then the equation (5) becomes

Oi =
ϕ(Qi)

T ∑i
j=1 ϕ(Kj)Vj

T

ϕ(Qi)T
∑i

j=1 ϕ(Kj)
(6)

By defining Si =
∑i

j=1 ϕ(Kj)Vj
T and zi =

∑i
j=1 ϕ(Kj),

Oi is expressed as follows.

Oi =
ϕ(Qi)

TSi

ϕ(Qi)T zi
(7)

where Si and zi can be computed efficiently in advance by cu-
mulative summing. Linear-attention [14] uses this, so to speak,
“inverse kernel trick” to calculate attention efficiently. H3 in-
corporates SSMs into linear-attention by replacing ϕ(Kj) in the
numerator of the equation (6) with SSMshift and the sum Si

with SSMdiag . It can be expressed by the following equation
[7].

Q⊙ SSMdiag(SSMshift(K)⊙ V ) (8)

where ⊙ denotes the Hadamard product. SSMdiag is an SSM
that restricts matrix A ∈ RN×N to a diagonal matrix. It is the
same as S4D by Gu et al. [16], and stores the state over the en-
tire input sequence. SSMshift is an SSM that restricts matrix A
as a shift matrix. It constructs an internal state based on Axt−1,

H3-Conformer BlockConformer Block

Figure 1: H3-Conformer

by shifting each component of xt−1 according to equation (1).
From equation (1), it is apparent that H3 is a causal model refer-
ring to the past information only. The computation of SSMdiag

and SSMshift can be performed with a computational complex-
ity of O(NL logL), and the computational complexity of the
entire H3 can be reduced to O(N2L + NL logL). While the
computational complexity of general self-attention is O(NL2),
H3 can suppress the increase in computational complexity to
close to a proportion of the input length L.

H3 has been shown to perform better in several NLP tasks
when combined with the attention layer [7]. A kind of SSM
called GSS has also been proposed to be combined with the
attention layer by Mehta et al [17].

3. Proposed models
3.1. H3-Conformer model

The Conformer block in the Confomer encoder consists of
three modules: a feedforward layer, a multi-head self-attention
(MHSA) layer, and a convolution layer (Figure 1 left). The
convolution layer aggregates local features, while the MHSA
layer is responsible for extracting global features. The H3 layer
is constructed based on linear attention and can process long-
range dependencies. Thus, it can be used as a replacement for
the MHSA layer of the Conformer block, and we name it H3-
Conformer block (Figure 1 right). H3-Conformer model is de-
fined by adopting H3-Conformer blocks in all encoder layers.

In the causal H3-Conformer for online ASR, the convolu-
tion layer is replaced by a causal convolution layer and the batch
normalization layer is removed.

3.2. Hybrid H3-Conformer(CH4) model

We also propose a hybrid model in which selected layers of
the Conformer encoder are replaced by H3-Conformer blocks,
which we call Hybrid H3-Conformer (CH4) model. We inves-
tigate on which layers H3 is more effective than MHSA in ex-
periments.

3.3. Parallel CH4 model

Furthermore, we explore a parallel use of the H3 layer and the
MHSA layer. The input is divided into two parts, one is fed to
the MHSA layer and the other to the H3 layer, and the com-
bined output is given to the FeedForward layer for mixing. This
module is defined as the Parallel H3-MHSA layer, shown in
Figure 2. It is used in all layers, and we call it Parallel Hybrid
H3-Conformer (Parallel CH4) model.
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Figure 2: Parallel Hybrid H3-Conformer

4. Experimental evaluations
4.1. Experimental conditions

In the evaluation experiments, we used two datasets ”Corpus
of Spontaneous Japanese (CSJ)” [18] and LibriSpeech [19] for
training and evaluation. We extracted 80-dimensional log-Mel
filter-bank features with a frame shift of 10 ms and a frame
size of 25 ms, and normalized them using the mean and vari-
ance of the entire training dataset. For the training data, speed
perturbation[20] and SpecAugment [21] were performed. In
speed perturbation, the speech rate is transformed by a factor
of 0.9 and 1.1.

As the output labels, CSJ uses Japanese characters with a
vocabulary size of 3261. For LibriSpeech, we performed byte-
pair encoding [22] tokenization with a vocabulary size of 1000.
To conduct long-form ASR evaluation, 24 consecutive utter-
ances in an audio book or a lecture were extracted and con-
catenated to form a long-form input. In all experiments, we use
CTC [23] because the focus of this study is the encoder of the
Conformer. In all models used in the experiments, the dimen-
sion of the encoder layers is 256, and there are 12 encoder lay-
ers in each model. The number of heads in the MHSA is fixed
at 8 and that in the linear attention structure of the H3 layer is
fixed at 2, except for the experiment to measure the processing
time. The optimization method was AdamW [24], and 5% of
the training dataset was randomly selected and used as the val-
idation dataset. The maximum learning rate was always set to
1×10−3, and learning rate decay was applied by cosine anneal-
ing. Training was performed for 50 epochs in all experiments.

4.2. Offline speech recognition

First, we conducted offline speech recognition. Conventional
Conformer, H3-Conformer, and CH4 were compared. For the
CH4 model, H3-Conformer blocks are used in the top 10 layers.

The results of short-form and long-form ASR for CSJ and
LibriSpeech are shown in Table 1, Table 2, Table 3, and Ta-
ble 4, respectively. In the tables, ”size” refers to the number
of trainable parameters. In the short-form ASR, the baseline
conventional Conformer performs the best in both datasets be-
cause Conformer uses both past and future information. On the
other hand, in the long-form ASR, CH4 was the best in CSJ,
and H3-Conformer was the best in LibriSpeech, both signifi-
cantly higher than the conventional Conformer at the 1% level
of significance. The result confirms the robustness of H3 and
CH4 in long-form ASR.

4.3. Online speech recognition

Next, we conducted online speech recognition using causal
models.

Table 1: CER (%) of offline short-form speech recognition on
CSJ

model size eval1 eval2 eval3
Conformer 23.7M 6.08 4.45 4.92

H3-Conformer 24.0M 6.58 4.91 5.13
CH4 24.0M 6.59 4.67 4.96

Table 2: CER (%) of offline long-form speech recognition on
CSJ

model size eval1 eval2 eval3
Conformer 23.7M 6.31 4.46 4.61

H3-Conformer 24.0M 6.16 4.31 4.54
CH4 24.0M 6.06 4.17 4.45

Table 3: WER (%) of offline short-form speech recognition on
LibriSpeech

dev test
model size clean other clean other

Conformer 23.1M 4.19 11.23 4.38 11.41
H3-Conformer 23.4M 5.09 14.03 5.28 14.18

CH4 23.4M 5.16 13.93 5.37 14.17

Table 4: WER (%) of offline long-form speech recognition on
LibriSpeech

dev test
model size clean other clean other

Conformer 23.1M 5.69 14.01 5.79 13.68
H3-Conformer 23.4M 4.86 13.12 5.15 13.26

CH4 23.4M 5.22 14.27 5.47 14.33

4.3.1. ASR results

CH4 models with various settings of H3-Conformer blocks in
different positions and numbers are compared using CSJ. When
the H3-Conformer block is used in all layers, the model is re-
ferred to as H3-Conformer, and CH4 uses H3-Conformer in
some layers. The results are shown in Table 5.

In the online setting, overall accuracy is degraded from the
offline setting (Table 2). The degradation is larger for the con-
ventional Conformer, suggesting that SSMs perform better with
online ASR. S4-Conformer and H3-Conformer showed signif-
icantly better performance than the conventional Conformer at
the 1% significance level. The CH4 model with H3-Conformer
blocks in the top 10 layers achieved even better accuracy com-
pared to the H3-Conformer using H3 in all 12 layers, and this
difference was significant at the 1% significance level. It should
be noted that even when the number of H3-Conformer blocks
is the same, models using H3 in higher layers tend to perform
better than those using it in bottom layers. This difference is sig-
nificant at the 1% significance level for the three and six layer
cases. This shows that the H3 layer performs better than the
MHSA layer for global processing in higher layers.

We also evaluated the online long-form ASR performance
with LibriSpeech. Based on the results from CSJ, we used a
model with the H3-Conformer blocks in the top 10 layers as
causal CH4. The results are shown in Table 6. The performance
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Table 5: CER (%) of online long-form speech recognition on
CSJ

model size eval1 eval2 eval3
Conformer 23.7M 10.20 8.07 8.62

S4-Conformer
(S4 in all layers) 22.5M 9.64 6.96 7.48

H3-Conformer
(H3 in all layers) 24.0M 9.50 6.74 7.20

CH4

H3 in bottom 3 layers 23.8M 10.30 8.12 8.81
H3 in top 3 layers 23.8M 9.77 7.21 8.04
H3 in bottom 6 layers 23.8M 10.18 8.07 8.33
H3 in top 6 layers 23.8M 9.35 6.82 7.41
H3 in bottom 10 layers 24.0M 9.06 6.79 7.10
H3 in top 10 layers 24.0M 9.04 6.44 6.99

Table 6: WER (%) of online long-form speech recognition on
LibriSpeech

dev test
model size clean other clean other

Conformer 23.7M 12.30 24.04 12.89 24.49
H3-Conformer 24.0M 7.86 18.82 8.17 19.12

CH4 24.0M 7.64 18.79 8.10 19.11

of CH4 and H3-Conformer significantly outperforms the base-
line causal Conformer. The difference between Conformer and
CH4 and that between Conformer and H3-Conformer were sig-
nificant at the 1% significance level. On the other hand, there
were no significant performance differences between CH4 and
H3-Conformer.

4.3.2. Parallel CH4 model

Using CSJ, we trained causal Parallel CH4 models with vari-
ous settings for the number of input/output dimensions in the
MHSA and the H3 layers. The long-form ASR results for these
models are shown in Table 7. Note that the model with a 0-
dim H3 layer is equivalent to the conventional Conformer and
the model with a 0-dim MHSA layer is equivalent to the H3-
Conformer.

The parallel model with a larger proportion of H3 layer di-
mensions tends to perform better. The differences in perfor-
mance of the model with 224 dimensions in the H3 layer com-
pared to the other four models in the table are all significant at
the 1% level of significance.

We looked at the absolute values of the learned weights of
the first linear layer in the FeedForward layer of the Parallel
H3-MHSA block and found that the output of the MHSA layer
is mostly used in lower layers, and the output of the H3 layer
is preferentially used in the higher layers. This result indicates
that the MHSA layer is more effective than the H3 layer in the
lower layers, while the H3 layer is more effective in higher lay-
ers. This difference in characteristics between the H3 layer and
the MHSA layer may be the reason why the hybrid model with
the MHSA in the lower layers and the H3 in the higher layers
performed better than other models.

4.3.3. Processing speed in long-form speech recognition

Processing times are compared among causal Conformer,
causal CH4, and causal H3-Conformer using LibriSpeech.
Here, we changed the size of long-form speech by changing
the number of utterances concatenated in the test set. For each

Table 7: CER(%) by causal Parallel CH4 for online long-form
speech recognition on CSJ

model
MHSA layer H3 layer size eval1 eval2 eval3

0 dim 256 dim 24.0M 9.50 6.74 7.20
32 dim 224 dim 30.3M 8.61 6.34 6.68
128 dim 128 dim 29.6M 10.96 8.75 8.75
224 dim 32 dim 29.7M 13.67 11.48 11.10
256 dim 0 dim 23.7M 10.20 8.07 8.62

Figure 3: Processing time for long-form speech recognition

number of concatenated utterances, we calculated the real-time
factor (RTF), which is the ratio of the total processing time to
the total length of the input speech, using all the data in the
test-other dataset.

One Titan RTX with 16.3 TFlops and memory of 24 GB
was used as a GPU for the experiments. For fairness, the num-
ber of heads of the linear attention structure in the H3 layer was
set to 8, the same number of heads in the MHSA layer. The
results are shown in Figure 3. Note that the values shown in
the figure are the average of five measurements. In the conven-
tional Conformer, the RTF increases in proportion to the num-
ber of concatenated utterances, while the RTF does not increase
in H3-Conformer and slightly increases in CH4. When the num-
ber of concatenated utterances is very small, the RTF gets large
because of the effect of overhead time.

5. Conclusion

In this study, we have proposed a CH4 model that incorpo-
rates the Hungry Hungry Hippos (H3) layer, a type of SSM,
into the Conformer model to improve the robustness of online
long-form ASR. The model was evaluated using datasets of both
Japanese and English. The effectiveness of the H3 layer was
clearly observed in the online long-form ASR setting. Experi-
mental results suggest that the H3 layer can handle long input
lengths unseen in the training time more robustly compared to
the MHSA layer. It was shown that further improvement is ob-
tained by using both the H3 layers and the MHSA layers, and
the H3 layer was better than MHSA for processing global fea-
tures in higher layers.

Future research directions include applying this model to
end-to-end speech translation tasks.
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and initialization of diagonal state space models,” in Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Cur-
ran Associates, Inc., 2022, pp. 35 971–35 983.

[17] H. Mehta, A. Gupta, A. Cutkosky, and B. Neyshabur, “Long range
language modeling via gated state spaces,” in The Eleventh Inter-
national Conference on Learning Representations, 2023.

[18] K. Maekawa, H. Koiso, S. Furui, and H. Isahara, “Spontaneous
speech corpus of Japanese,” in Proceedings of the Second In-
ternational Conference on Language Resources and Evaluation
(LREC’00), M. Gavrilidou, G. Carayannis, S. Markantonatou,
S. Piperidis, and G. Stainhauer, Eds. Athens, Greece: European
Language Resources Association (ELRA), May 2000.

[19] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[20] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Interspeech, 2015.

[21] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” in Interspeech, 2019.

[22] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” in Proceedings of
the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), K. Erk and N. A.
Smith, Eds. Berlin, Germany: Association for Computational
Linguistics, Aug. 2016, pp. 1715–1725. [Online]. Available:
https://aclanthology.org/P16-1162

[23] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks,” in Machine Learn-
ing, Proceedings of the Twenty-Third International Conference
(ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006,
ser. ACM International Conference Proceeding Series, W. W. Co-
hen and A. W. Moore, Eds., vol. 148. ACM, 2006, pp. 369–376.

[24] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in International Conference on Learning Representations,
2019.

2899


