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Abstract
This paper addresses engagement recognition based on four
multimodal listener behaviors - backchannels, laughing, eye-
gaze, and head nodding. Engagement is an indicator of how
much a user is interested in the current dialogue. Multiple
third-party annotators give ground truth labels of engagement
in a human-robot interaction corpus. Since perception of en-
gagement is subjective, the annotations are sometimes different
between individual annotators. Conventional methods directly
use integrated labels, such as those generated through simple
majority voting, and do not consider each annotator’s recog-
nition. We propose a two-step engagement recognition where
each annotator’s recognition is modeled and the different anno-
tators’ models are aggregated to recognize the integrated label.
The proposed neural network consists of two parts. The first
part corresponds to each annotator’s model which is trained
with the corresponding labels independently. The second part
aggregates the different annotators’ models to obtain one inte-
grated label. After each part is pre-trained, the whole network
is fine-tuned through back-propagation of prediction errors. Ex-
perimental results show that the proposed network outperforms
baseline models which directly recognize the integrated label
without considering differing annotations.
Index Terms: engagement, multimodal, behaviors, different la-
bels, neural network

1. Introduction
A number of spoken dialogue systems have been developed and
deployed in conversational agents and robots. Some systems
handle situated interactions such as guidance [1, 2] and quiz
games [3, 4], while others are designed to conduct chatting [5].
In these dialogue scenarios, where the systems are not entirely
reactive, the systems should recognize whether the user is being
engaged in the current dialogue [6, 7]. In the case of human-
human conversations, people can recognize engagement from
listener behaviors such as backchannels.

Engagement recognition has been widely studied [8]. En-
gagement represents the process by which participants estab-
lish, maintain, and end their interaction [9]. In the field of
human-robot interaction, engagement is defined as the user state
which represents how much a user is interested in and will-
ing to continue the current dialogue [10, 11]. For example,
by recognizing user engagement, the systems can control turn-
taking behaviors [12, 13] and dialogue policies [14, 15, 16],
and increase the quality of user experience through the dia-
logue. For input features of engagement recognition, we can
exploit non-verbal multimodal behaviors such as eye-gaze [17,
18, 19, 20, 12, 21, 15], backchannels (e.g., “yeah”) [19, 21],
laughing [22], head nodding [21], facial movement and direc-
tion [17, 15], spatial location and distance [23, 24, 12], and
conversational interaction features like adjacency pairs [19].
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Figure 1: Overview of the proposed method

In addition, direct use of low-level signals such as acous-
tic and image features was explored [10, 25, 26, 27]. Al-
though such recognition models were initially based on heuris-
tic rules [9, 28, 23], recent approaches are based on machine
learning techniques [10, 12, 21, 29, 26, 15, 27].

In this study, we address engagement recognition based on
multimodal listener behaviors such as backchannels, laughing,
eye-gaze, and head nodding. To obtain ground-truth labels of
engagement, we ask third-party annotators to annotate the la-
bels. However, perception of engagement is subjective and may
depend on each annotator. Therefore, the ground truth label
of engagement is sometimes inconsistent between annotators.
Previous studies integrated the different labels by using simple
methods such as majority voting, and trained a model with the
integrated labels [18, 21]. They did not use the raw labels which
differed from one annotator to another.

We assume that each annotator’s recognition can help to
recognize the integrated label. Therefore, we use not only the
integrated labels but also different annotators’ labels. In our
previous work, we proposed a hierarchical Bayesian model to
recognize each annotator’s label [30]. In this paper, we propose
a neural network to predict the integrated label by considering
the different annotators’ labels. Figure 1 depicts the overview
of the proposed method. The proposed neural network consists
of two parts. The first part corresponds to recognition of each
annotator’s label. The second part aggregates the results of the
first part to recognize the integrated label. Each part is pre-
trained one by one, and then the whole network is fine-tuned.
It is expected that the pre-training and fine-tuning lead to effi-
cient training for the network so that we improve the recogni-
tion accuracy. The proposed network is more natural modeling
in that each annotator’s model is captured and aggregated to rec-
ognize the integrated labels, and this study contributes to studies
on recognition tasks with human subjectivity such as emotion
recognition.
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Figure 2: Snapshot of data collection

2. Dialogue corpus and annotation of
engagement

We have collected a human-robot interaction corpus in which
the android (humanoid) robot ERICA [31, 32] interacted with
a human subject. ERICA was operated by another human sub-
ject, called an operator, who was being in a remote room. Fig. 2
shows a snapshot of the corpus. We asked the robot operator to
think of and utter her dialogue content by herself. The voice of
the operator was directly played with a speaker placed in ER-
ICA. We use 20 dialogue sessions for annotation of the subject
engagement in this paper. The subjects were 12 females and 8
males, with ages ranging from teenagers to over 70 years old.
The operators were 6 actresses in their 20s and 30s. Whereas
each subject participated in only one session, each operator par-
ticipated some sessions. All participants were native Japanese
speakers.

There are several methods to annotate the ground-truth
data of the subject engagement. The direct method is to ask
the subject of the dialogue to evaluate his/her own engage-
ment right after the dialogue session. However, we observed
some bias where the subjects tend to give positive evaluations
on themselves. This kind of bias was also observed in other
works [33, 34]. The second method is to ask the operator to
evaluate the subject engagement. However, due to time con-
straints, the actresses could not participate in this annotation
work. Many other studies adopt a practical method to ask third-
party people (annotators) to evaluate engagement by watching a
video of the dialogue. There are two approaches to this annota-
tion: training a small number of annotators [20, 12, 26, 15] and
making use of the wisdom of crowds [18, 21]. The latter is re-
alistic for a large-scale annotation, thus we took this approach.

The annotators were 12 females who had not participated
in the dialogue experiment and were recruited in our university.
We randomly selected 5 of the 12 annotators for each dialogue
session. The instructions given to them were as follows. The
definition of engagement was presented as how much the subject
is interested in and willing to continue the current dialogue.
We also gave a list of listener behaviors that could be related
to engagement. This list included facial expression, laughing,
eye-gaze, backchannels, head nodding, body pose, moving of
shoulders, and moving of arms or hands. Watching the dialogue
video from the robot’s viewpoint, each annotator was asked to
press a button when both conditions were being met: the subject
is expressing any listener behaviors and the annotator interprets
that the behavior suggests a high level of engagement.

We use the robot’s conversational turn as a unit for engage-
ment recognition in this study. If an annotator pressed the but-

1 2 3 4 5 6 7 8 9 10 11

annotator index n

1
2

1
1

1
0

9
8

7
6

5
4

3
2

an
no

ta
to

r
in

de
x
n

0.341 0.628 0.205 0.376 0.091 0.398 0.330 0.310 0.263 0.417 0.324
0.327 0.346 0.425 0.345 0.063 -0.059 0.281 0.176 0.333 0.459
0.130 0.475 0.489 0.113 0.408 0.333 0.397 0.307 0.144
0.510 0.402 0.563 0.123 0.219 0.196 0.423 0.301
0.115 0.326 0.459 0.285 0.224 0.328 0.120
0.201 0.293 0.447 0.417 0.173 0.459
0.392 0.578 0.452 0.172 0.264
-0.002 0.359 0.568 0.034
0.015 0.480 0.459
0.214 0.445
0.325

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Inter-rater agreement scores (Cohen’s kappa coeffi-
cient) for each pair of the annotators

ton once or more in a turn, the turn is regarded as engaged. The
total number of robot turns was 433 in 20 dialogue sessions.
We excluded short turns whose durations are shorter than 3 sec-
onds, and also turns corresponding to greetings. The numbers
of engaged and not engaged turns annotated by individual an-
notators were 894 and 1,271 respectively. The average value
of Cohen’s kappa coefficients on every pair of two annotators
was 0.291 with a standard deviation of 0.229. This shows the
difficulty of this annotation work which has high subjectivity.
However, as Fig. 3 shows, some annotator pairs showed higher
coefficients than the moderate agreement (larger than 0.4). The
result suggests that each annotator had a different perspective
on multimodal behaviors for engagement recognition, but some
annotators had similar tendencies. We integrated the labels by
majority voting with the five annotators. If more than three an-
notators gave an engaged label, the integrated label was anno-
tated as engaged. In terms of integrated labels, the number of
engaged and not engaged turns were 166 and 267 respectively.

We also asked the subjects to complete a survey on which
behaviors were related to engagement. For each dialogue ses-
sion, we asked each annotator to select all meaningful behaviors
in order to judge the engagement level. The result indicated that
engagement could be related to multiple behaviors of backchan-
nels, laughing, eye-gaze, head nodding, facial expression, and
body pose. Among them, we use four behaviors: backchannels,
laughing, eye-gaze, and head nodding in the following exper-
iment. It was difficult to annotate facial expression and body
pose due to their ambiguity.

3. Neural network aggregating different
annotators’ models

Each annotator’s recognition should be individually modeled in
the case where the recognition task has subjectivity. We propose
a neural network that consists of two parts where the first part
corresponds to each annotator’s recognition model and the sec-
ond part aggregates the different annotators’ models to recog-
nize the majority label. Similar models that aggregate different
annotators’ models were proposed based on this two-step ap-
proach [35, 36]. These models used conditional random fields
(CRF), while our model uses neural networks, with the advan-
tage being that we can fine-tune the whole network in the end-
to-end manner.

3.1. Problem formulation

Engagement recognition is done for each turn of the robot. The
input is based on listener behaviors of the user during the turn:
backchannels, laughing, eye-gaze, and head nodding. Table 1
summarizes the used feature set. We distinguished backchan-
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Table 1: Feature set of listener behaviors (7 dimensions)

behavior type feature

backchannels (1) # of responsive interjections
(2) # of expressive interjections

laughing (3) # of laughing

eye-gaze
(4) time ratio of gaze toward robot
(5) total time of gaze toward robot
(6) # of gaze switching toward robot

head nodding (7) # of head nodding

nels into two types: responsive interjections (such as “yeah”
in English and “un” in Japanese) and expressive interjections
(such as “oh” in English and “he-” in Japanese) [37]. We man-
ually annotated these features on the human-robot interaction
corpus. Note that we are also working on automatic detection
of these behaviors [38, 39]. In future work, we will integrate
the engagement recognition model with these automatic detec-
tion methods for practical spoken dialogue systems. The output
is binary, engaged or not, for each turn. The reference label is
based on the majority which was voted from labels of the five
annotators.

3.2. Network architecture

The proposed network consists of two parts as illustrated in Fig-
ure 4. Each part is realized by a linear interpolation of a GRU
(gated recurrent unit) [40] and a linear transformation, inspired
by the recurrent high-way network [41]. It is expected that the
GRU captures context information through turns and the linear
transformation captures local information of the current behav-
ior input.

The network architecture is as follows. The input vector is
represented as:

Xt = (x1t, · · · , xbt, · · · , xBt)
T , (1)

where xbt represents the feature value of the b-th behavior in the
t-th robot turn. B is the number of behavior features (B=7 in
this case). In the first part, a combination of a GRU and a linear
transformation is prepared for each annotator, and it is trained
to recognize each annotator’s label. For the n-th annotator’s
model, the input vector is fed into the three functions as:

Ztn = σ(GRUn(Xt)) , (2)
Ttn = σ(WTnXt + bTn) , (3)
Ctn = σ(WCnXt + bCn) , (4)

where n ∈ {1, · · · , N} represents the annotator index, σ(·) is
the sigmoid function, and GRU(·) is the gated recurrent unit that
stores a context hidden state inside it. N is the number of total
annotators in the training data (N=12 in this case). Afterwards,
the outputs of the GRU and the linear transformation is linearly
interpolated by the weight parameter as:

Ytn = Ctn · Ttn + (1− Ctn) · Ztn . (5)

This output corresponds to the recognition result of the n-th
annotator in the t-th turn. In the second part, the outputs of all
the annotators’ models are concatenated as:

Yt = (Yt1, · · · , Ytn, · · · , YtN )T . (6)
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Figure 4: Proposed network architecture

The same combination of a GRU and a linear transformation
is applied to the concatenated vector to aggregate the different
outputs as:

Zt = σ(GRU(Yt)) , (7)
Tt = σ(WTYt + bT ) , (8)
Ct = σ(WCYt + bC) . (9)

Finally, the probability of engaged in the turn is obtained in the
similar way as the first part as:

Et = Ct · Tt + (1− Ct) · Zt . (10)

If the output Et is larger than a threshold, the t-th turn is recog-
nized as engaged otherwise not engaged.

3.3. Pre-training and fine-tuning

To make the first part of the proposed method realize each an-
notator’s recognition and to make the second part aggregate dif-
ferent annotators’ models, we pre-train each part one by one.
Although we can directly train the whole network using the in-
tegrated labels, it is expected that the pre-training leads to more
efficient learning. Furthermore, the direct training sometimes
falls into local minima. Similar to the current case, it is often
the case that each annotator partially gives ground-truth labels.
In other words, some annotations of individual annotators are
missing. In this case, the separated pre-training and fine-tuning
would be a practical approach.

At first, we train the first part by using each annotator’s
labels. Using the n-th annotator’s labels, we train the n-th
annotator’s model. The cost function is the squared error as
|Ytn − Y ′

tn|2 , where Y ′
tn ∈ {0, 1} is the reference label of the

n-th annotator in the t-th turn. Second, after fixing the first-part
parameters, we train only the second part parameters by using
the integrated labels. The cost function is also the squared error
as |Et −E′

t|2 where E′
t ∈ {0, 1} is the integrated reference la-

bel (the majority label) in the t-th turn. Finally, we fine-tune the
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Table 2: Recognition accuracy

method accuracy
(A) majority baseline 0.617
(B) one-layer 0.639
(C) two-layers (only fine-tuning) 0.686
(D) two-layers (only pre-training) 0.685
(E) proposed 0.728

whole network by using the integrated labels in the end-to-end
manner. The cost function is same as the second part.

4. Experimental evaluations
We conducted cross validation of 20 dialogue sessions, with 19
used for training and the rest for testing per fold. The input be-
havior features were manually annotated. The settings of the
proposed model are as follows. We used the Adam algorithm
as the optimizer [42]. The minibatch size corresponded to one
session. The number of epochs were 30 and 100 for the fine-
tuning and the pre-training, respectively. The dropout rate was
set at 0.2. We implemented the neural networks with Chainer
3.5.01 The reference labels were the majority labels defined in
Section 2. The probability of engaged (Eq. (10)) was calculated
for each robot turn. Setting the decision threshold at 0.5, we cal-
culated the accuracy score which is a ratio of the number of the
correctly recognized turns to the total number of the turns. The
final evaluation was the averaged accuracy among all folds in
the cross validation. The accuracy score of a majority baseline
was 0.617 (=267/433).

4.1. Effect of aggregating different annotators’ models

The proposed model is compared with some methods which do
not consider the different annotators’ models. The first method
is a single-layer network using the combination of a GRU and a
linear transformation, referred to as one-layer. This method was
directly trained with the integrated labels. The second method
is the same architecture of the proposed model but conducted
only the fine-tuning directly without the pre-training, referred
to as two-layers (only fine-tuning). Additionally, we tested a
method without the fine-tuning, referred to as two-layers (only
pre-training). This method partially corresponds to the earlier
studies [35, 36].

The results are summarized in Table 2. The proposed
method achieved the higher accuracy than the others. Com-
paring the one-layer model (B) with the two-layer models (C-
E), the two-layer models had higher accuracies. This suggests
that the more complicated network is effective to recognize the
overall integrated label. Comparing the proposed method (E)
with the fine-tuning only model (C), the pre-training is effec-
tive for this task and aggregating different annotators’ models
is important. Finally, the proposed method (E) showed higher
accuracy than the pre-training only model (D), and this gain is
derived from the advantage of using neural networks where we
can fine-tune the whole network.

4.2. Identifying important features

We also examined the effect of each behavior feature. We elim-
inated each of the used features and tested the proposed model
with the same cross validation. The results are reported in Ta-

1https://chainer.org

Table 3: Recognition accuracy without each feature on the pro-
posed method

eliminated feature accuracy
nothing 0.728
(1) # of responsive interjections 0.730 (N 0.002)
(2) # of expressive interjections 0.712 (H 0.016)
(3) # of laughing 0.696 (H 0.032)
(4) time ratio of gaze toward robot 0.724 (H 0.004)
(5) total time of gaze toward robot 0.698 (H 0.030)
(6) # of gaze switching toward robot 0.697 (H 0.031)
(7) # of head nodding 0.713 (H 0.015)

ble 3. Note that the greater the decrease in accuracy, the more
effective that feature is for the model. For backchannels, the re-
sponsive interjections (1), such as “yeah”, was not so useful for
the model. On the other hand, expressive interjections (2), such
as “oh”, are important because they are reactions toward what
was said and better reflects the interest of the listener. laugh-
ing (3) is the most effective, so this behavior is important for
engagement recognition. With regard to eye-gaze, while time
ratio (4) was not effective, the total time duration (5) and num-
ber of gaze switching (6) were effective. Finally, head nodding
(7) was also effective.

5. Conclusions

We have proposed a neural network for engagement recognition
in spoken dialogue. Since perception of engagement is subjec-
tive, the ground-truth data depends on each annotator. A net-
work aggregating different labels may help recognition of in-
tegrated labels (e.g., majority voting). The proposed method
consists of two parts - recognition of each annotator’s label,
and aggregation of different annotators’ models to recognize
the overall integrated label. Each part is realized by the lin-
ear combination of the GRU and the linear transformation. The
first part was pre-trained with the different annotators’ labels,
and the second part was also pre-trained with the integrated la-
bels by fixing the parameters of the first part. Afterward, the
whole network was fine-tuned. The experimental result shows
that pre-training both each annotator’s model and aggregation
of different annotators’ models is effective. The result also in-
dicates that laughing and some eye-gaze features are informa-
tive in this engagement recognition task, followed by expressive
interjections and head nodding.

As future work, we are now incorporating this engagement
recognition model into practical spoken dialogue systems. The
recognition model is being integrated with automatic detection
models of multimodal behaviors [38, 39] to realize online en-
gagement recognition. We are also developing a dialogue sys-
tem using the online engagement recognition and also designing
the system actions according to user engagement. We will con-
duct dialogue experiments to evaluate the effect of awareness of
user engagement.
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