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Abstract—This paper describes a multi-task learning method
that detects the onset times of drums and the beat and downbeat
times from a music signal. Since the drum part typically consists
of repetitive patterns synchronized with the metrical structure in
popular music, drum transcription and metrical analysis would
benefit each other. The basic approach is to train a deep neural
network (DNN) with a branching architecture that extracts latent
features common to both tasks from a music signal and then feeds
them to task-specific networks separately. The estimated frame-
level posterior probabilities of drum onsets, beats, and downbeats,
however, often have weak and inconsistent periodic structures. To
solve this problem, we propose a regularized training method that
encourages the three probability sequences to be highly auto- and
cross-correlated. Specifically, our method aims to minimize the
entropy of the auto-spectrum computed from each probability
sequence and that of the cross-spectrum computed from each
of the three sequence pairs, because a smaller entropy indicates
a stronger element-wise periodicity or pairwise consistency. The
experiment showed the mutual benefit of drum transcription and
metrical analysis and the effectiveness of the periodicity- and
consistency-based regularizations.

I. INTRODUCTION

Automatic drum transcription (ADT) is one of the most
fundamental subtasks of automatic music transcription (AMT)
that aims to estimate the symbolic score of a music signal.
Since the drum part affects the rhythmic characteristics of the
song in popular music, drum transcription forms the basis of
music information retrieval (MIR). Although the ultimate goal
of ADT is audio-to-score transcription, we focus on audio-to-
MIDI transcription that aims to estimate the onset times of
drums in seconds as an intermediate goal.

In recent studies on audio-to-MIDI drum transcription, deep
neural networks (DNNs) have successfully been used for esti-
mating from a music spectrogram the posterior probabilities of
the presence of drum onsets at the frame level [1]–[3]. Given
a ground-truth binary sequence representing the presence or
absence of drum onsets, one can train a DNN such that the
posterior probability of the binary sequence is maximized, i.e.,
the cross-entropy loss is minimized. If only a limited amount
of training data is available as is often the case with AMT [4],
[5], however, the repetitive structures of the drum part observed
at multiple metrical levels might not be captured well.

In this paper, we take the multi-task learning approach to
joint drum transcription and metrical analysis (beat and down-
beat detection). Both tasks are typically defined as binary clas-
sification problems that aim to estimate the presence or absence
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Fig. 1. The frame-level sequences of drum onset, beat, and downbeat probabil-
ities estimated by the multi-task learning method without/with the periodicity-
aware regularization. The red and blue arrows indicate the element-wise
periodicity and pairwise consistency, respectively.

of drum onsets, beats, and downbeats at the frame level, and
are expected to benefit each other by extracting common latent
features with respect to periodicity from a music signal [2]. In
this approach, one may train a DNN with a common feature
extractor followed by task-specific binary classifiers. In such a
basic branching architecture, however, the posterior probabil-
ities of drum onsets, beats, and downbeats are estimated in a
conditionally independent manner and are thus not guaranteed
to be consistent in terms of periodicity.

To mitigate this problem, we propose a regularized training
method that encourages the sequences of drum onset, beat, and
downbeat probabilities to have periodic patterns synchronously
(Fig. 1). We focus on the fact that the tempo tends to be kept
constant throughout the entire song in popular music. This
requests that each sequence should have clear periodicity solely
and that a sequence should share the same periodicity with
another sequence. We thus propose element-wise and pairwise
regularization terms described in detail below.

First, we focus on the auto-correlation function of each se-
quence. If the sequence of drum onset probabilities is repetitive
at the measure level, its auto-correlation function exhibits sharp
peaks spaced at the downbeat interval. The auto-spectrum ob-
tained by applying the discrete Fourier transform (DFT) to the
auto-correlation function exhibits a few peaks at the downbeat
frequency. The entropy of the auto-spectrum can thus be used
as a regularization term to be minimized. The same applies
to the sequences of beat and downbeat probabilities exhibiting
the periodicity at the beat and downbeat levels.

Second, we focus on the cross-correlation function for each
of the three sequence pairs. In general, every time the sequence
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of drum onset probabilities is time-shifted by a downbeat inter-
val, it matches well the sequence of downbeat probabilities in
terms of peak positions. The cross-correlation function exhibits
sharp peaks spaced at the downbeat interval. The entropy of
the cross-spectrum can thus be another regularization term.
The same applies to the other two pairs.

We experimentally show that the multi-task learning ap-
proach is especially effective for improving the performance
of metrical analysis and the regularized training method has a
potential of improving the performances of drum transcription
and metrical analysis.

II. RELATED WORK

Deep learning has been the central choice in modern ADT
[2], [3], [5]–[10]. In general, a deep neural network (DNN)
is trained in a supervised manner using paired data consist-
ing of music signals and drum onset annotations. Due to the
impulsive nature of drums sounds, CNNs have widely been
used as basic building blocks for extracting local features. In
particular, a CNN variant called the temporal convolutional
network (TCN) [11], [12] has gained much attention because
it can take into account both short- and long-term dependencies
[13]. To consider long-term contextual information, a CNN is
often followed by a recurrent neural network (RNN), resulting
in a convolutional RNN (CRNN) [2].

To improve the performance with a limited amount of paired
data, one may use data synthesis [14], data augmentation [5],
or unsupervised learning [15]. However, these methods are still
insufficient for dealing with considerable variations in real-
world drum sounds. Alternatively, regularized training tech-
niques based on prior knowledge of drum patterns have been
explored [10] as well as phase consideration [16] and architec-
tural innovations [7]. In this study, we focus on the periodicity
of drum onsets for regularization.

For metrical analysis, DNN-HMM combinations have often
been used [13], [17]–[20]. In this approach, a DNN is used
for estimating sequences of beat and downbeat probabilities,
and an HMM is then used for detecting beat and downbeat
times from these sequences. Instead of the standard HMM, a
hidden semi-Markov model (HSMM) that explicitly represents
the duration of each state was proven to be effective for taking
into account the tempo and meter consistency of beat and
downbeat times. In this study, we use a similar HSMM-based
decoder to obtain consistent results.

III. PROPOSED METHOD

This section describes the multi-task learning of drum tran-
scription and metrical analysis with a periodicity-aware regu-
larized training method.

A. Problem Specification

We tackle drum transcription and beat and downbeat detec-
tion from a music signal. We use the power spectrograms of the
left and right channels of the audio signal X ∈ R2×F×T as in-
put. Let YD ∈ {0, 1}K×T , YB ∈ {0, 1}T , and YW ∈ {0, 1}T
denote the presence or absence of drum onsets, that of beats,
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Fig. 2. The proposed joint drum transcription and metrical analysis based on
periodicity-aware regularized multi-task learning.

and that of downbeats at the frame level, respectively, where
F is the number of frequency bins, T is the number of frames,
and K is the number of drum instruments. We focus on the
three major drum classes (K = 3): bass drum (BD), snare
drum (SD), and hi-hats (HH). Let Y ≜ {YD,YB,YW}. In
the training phase, both X and Y are given as paired data. In
the test phase, Y is estimated from X.

B. Multi-Task Learning

We explain the loss function to be minimized for joint drum
transcription and metrical analysis. Inspired by [17], [20], we
use a CRNN with a branching architecture for jointly estimat-
ing a sequence of drum onset probabilities ϕD ∈ [0, 1]K×T ,
that of beat probabilities ϕB ∈ [0, 1]T , and that of downbeat
probabilities ϕD ∈ [0, 1]T from the input X (Fig. 2).

1) Drum Transcription Loss: The drum transcription loss is
given by the binary cross-entropy (BCE) of ϕD for the ground-
truth data YD:

LD
BCE = − 1

K

K,T∑
k,t=1

(
Y D
kt log ϕ

D
kt+(1−Y D

kt) log(1−ϕD
kt)

)
. (1)

2) Metrical Analysis Losses: The metrical analysis losses
are given by the BCEs of ϕB and ϕW for the ground-truth data
YB and YW:

LB
BCE = −

T∑
t=1

(
Y B
t log ϕB

t +(1−Y B
t ) log(1−ϕB

t )
)
, (2)

LW
BCE = −

T∑
t=1

(
Y W
t log ϕW

t +(1−Y W
t ) log(1−ϕW

t )
)
. (3)

3) Total Loss: For joint training, we aim to minimize the
weighted sum of the individual losses:

LBCE = λD
BCELD

BCE + λB
BCELB

BCE + λW
BCELW

BCE, (4)

where λD
BCE, λB

BCE, and λW
BCE are adjustable weights.

C. Periodicity-Aware Regularization

We explain regularization terms that encourage element-
wise periodicity and pairwise consistency. We first explain the
core ideas underlying the regularization terms (Figs. 3(a) and
3(b)) and describe the regularization terms.
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Fig. 3. (a) Examples of probability sequences and the corresponding auto-correlation functions and auto-spectra with entropies. A more periodic probability
sequence results in the auto-spectrum with a smaller entropy. (b) Examples of probability sequence pairs and the corresponding cross-correlation functions and
cross-spectra with entropies. A more consistent probability sequence pair results in the cross-spectrum with a smaller entropy.

1) Auto-Correlation Analysis: The auto-correlation function
for a probability sequence ξ ∈ [0, 1]T is given by

Rξξ(τ) =
1

T

T∑
t=1

ξtξ(t+τ−1)%T+1, (5)

where % represents the modulo operation. Using the Wiener-
Khinchin theorem, the spectrum of Rξξ is given by

Sξξ = FRξξ = |Fξ|·2, (6)

where F ∈ CT×T represents the discrete Fourier transform
(DFT) matrix and |a|·2 represents the element-wise operation
that takes the absolute square values of the elements of a vector
a. The entropy of the spectrum Sξξ is given by

Hξξ = −
T∑

t=1

S̄ξξ(t) log S̄ξξ(t), (7)

S̄ξξ = Normalize(Sξξ), (8)

where Normalize(a) represents the normalization operation
that makes the sum of the elements of a vector a equal to
1. If the probability sequence ξ has clear periodicity, i.e., it
has regular periodic patterns and the peak intervals are integer
multiples of some basic time unit (e.g., tatum, beat, or down-
beat), the auto-correlation function and the auto-spectrum have
equally-spaced sharp peaks. The negative entropy −Hξξ can
be used as an indicator of periodicity.

2) Cross-Correlation Analysis: The cross-correlation func-
tion for probability sequences ξ,ψ ∈ [0, 1]T is given by

Rξψ(τ) =
1

T

T∑
t=1

ξtψ(t+τ−1)%T+1. (9)

Using the Wiener-Khinchin theorem, the magnitude spectrum
of Rξψ is given by

Sξψ = |FRξψ|· = |(Fξ)∗ ⊙ (Fψ)|·, (10)

where a∗ represents the element-wise conjugate operation for
a vector a, ⊙ represents the element-wise multiplication, and
|a|· represents the element-wise operation that takes the abso-
lute values of the elements of a vector a. The entropy of the
spectrum Sξψ is given by

Hξξ = −
T∑

t=1

S̄ξψ(t) log S̄ξψ(t), (11)

S̄ξψ = Normalize(Sξψ). (12)

If the probability sequences ξ and ψ are consistent in terms of
periodicity, i.e., they have synchronous periodic patterns, the
cross-correlation function and the cross-spectrum have equally-
spaced sharp peaks. The negative entropy −Hξψ can be used
as an indicator of consistency.

3) Element-Wise Regularization: We propose element-wise
regularization terms, denoted by LD

ACE, LB
ACE, and LW

ACE, based
on the auto-correlation entropy (ACE) of the drum onset prob-
ability sequence ϕD, that of the beat probability sequence ϕB,
and that of the downbeat probability sequence ϕW:

LD
ACE = − 1

K

K,T∑
k,t=1

ϕ̄D
kt log ϕ̄

D
kt, (13)

ϕ̄D
k = Normalize(|FϕD

k |·2), (14)

LB
ACE = −

T∑
t=1

ϕ̄B
t log ϕ̄

B
t , (15)

ϕ̄B = Normalize(|FϕB|·2), (16)

LW
ACE = −

T∑
t=1

ϕ̄W
t log ϕ̄W

t , (17)

ϕ̄W = Normalize(|FϕW|·2), (18)

where ϕD
k ∈ [0, 1]T denotes the drum onset probability se-

quence for drum class k.
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We aim to minimize the weighted sum of the individual
regularization terms:

LACE = λD
ACELD

ACE + λB
ACELB

ACE + λW
ACELW

ACE, (19)

where λD
ACE, λB

ACE, and λW
ACE are adjustable weights.

4) Pairwise Regularization: We propose pairwise regular-
ization terms, denoted by LDB

CCE, LDW
CCE, and LBW

CCE, based on
the cross-correlation entropy (CCE) for each of the possible
pairs between the drum onset probability sequence ϕD, the
beat probability sequence ϕB, and the downbeat probability
sequence ϕW:

LDB
CCE = − 1

K

K,T∑
k,t=1

ϕ̄DB
kt log ϕ̄DB

kt , (20)

ϕ̄DB
k = Normalize(|FϕD

k |· ⊙ |FϕB|·), (21)

LDW
CCE = − 1

K

K,T∑
k,t=1

ϕ̄DW
kt log ϕ̄DW

kt , (22)

ϕ̄DW
k = Normalize(|FϕD

k |· ⊙ |FϕW|·), (23)

LBW
CCE = −

T∑
t=1

ϕ̄BW
t log ϕ̄BW

t , (24)

ϕ̄BW = Normalize(|FϕB|· ⊙ |FϕW|·). (25)

We aim to minimize the weighted sum of the individual
regularization terms:

LCCE = λDB
CCELDB

CCE + λDW
CCELDW

CCE + λBW
CCELBW

CCE, (26)

where λDB
CCE, λDW

CCE, and λBW
CCE are adjustable weights.

5) Total Loss: For regularized joint training, we aim to
minimize the sum of the basic supervised loss LBCE in (4),
the element-wise regularization term LACE in (19), and the
pairwise regularization term LCCE in (26):

L = LBCE + LACE + LCCE. (27)

The weights can be adjusted for controlling the relative im-
portance of different tasks.

D. Decoding

In the test phase, given X, we jointly estimate the drum on-
set probability sequence ϕD, the beat probability sequence ϕB,
and the downbeat probability sequence ϕW using the trained
CRNN. For improved performance, we use different decoding
techniques for detecting the drum onsets YD and the beat and
downbeat times YD and YW.

1) Drum Transcription: The final output YD is obtained by
performing peak-picking and thresholding for ϕD as follows:

Y D
kt =

{
1 (ϕD

kt ≥ δk)

0 (otherwise)
, (28)

where δk is a threshold configured for each drum instrument.

2) Metrical Analysis: Since the naive thresholding has a
limitation in performance, the final outputs YB and YW are de-
tected from from ϕB and ϕW with a metrical analysis method
based on a dynamic Bayesian network (DBN) [21].

We explain the decoding method for the beat probability se-
quence ϕB. The DBN is a hidden Markov model (HMM) with
hidden states zt = [ct, ċt] at frame t. Here, ct ∈ {1, 2, . . . , ċ}
is a discrete random variable representing the position within
a beat at frame t, and ċt ∈ {ċmin, ċmin + 1, . . . , ċmax} is the
total number of discretized positions within one beat, which
is a random variable representing the tempo at frame t, where
ċmin and ċmax denote the minimum and maximum values of the
tempo, respectively. Let ∆ be the frame length of the audio
signal and BPMt represent the tempo in beats per minute at
frame t. Then, ċt can be expressed as follows:

ċt = round

(
4× 60

BPMt ∗∆

)
. (29)

If we denote the observation sequence as {ot}Tt=1, the proba-
bility model can be defined as follows:

p(z1:T ,o1:T ) = p(z1:T )p(o1:T |z1:T ). (30)

Our goal is to estimate the hidden state sequence z∗1:T with
the maximum posterior probability as follows:

z∗1:T = argmax
z1:T

p(z1:T |o1:T ), (31)

p(o1:T |z1:T ) ∝ p(z1)

T∏
t=2

p(zt|zt−1)p(ot|zt), (32)

where p(ot|zt) represents the observation model, and p(zt|zt−1)
represents the transition model. Equation (31) can be solved
efficiently using the Viterbi algorithm [22]. The term p(z1:T )
in (30) represents the generative process of the hidden states
z1:T , which is given by

p(z1:T ) = p(z1)

T∏
t=2

p(zt|zt−1), (33)

where p(z1) represents the initial probability and p(zt|zt−1)
represents the transition probability given by

p(zt|zt−1) = p(ct|ct−1, ċt−1)p(ċt|ċt−1), (34)
p(ct|ct−1, ċt−1) = 1z. (35)

where 1z is a function that takes 1 if ct = (ct−1+1) mod ċt−1

and 0 otherwise. If ct−1 = ċt−1, we have

p(ċt|ċt−1) = exp
(
−λ

∣∣∣∣ ċt
ċt−1

− 1

∣∣∣∣) , (36)

where λ is a hyperparameter. Otherwise, we have

p(ċt|ċt−1) =

{
1 (ct = ct−1 + 1)

0 otherwise
. (37)

Finally, for the hidden state sequence x∗
1:T with the maxi-

mum posterior probability, we detect all t’s where ct = 1. This
sequence is the estimated beat time sequence.
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TABLE I
THE F-MEASURES OF DRUM TRANSCRIPTION AND METRICAL ANALYSIS.

VALUES IN BOLD ARE WITHIN 0.5 PTS OF THE BEST VALUE.

Multi-task Regularized Drum Transcription Metrical
Learning Training Analysis

D B W ACE CCE BD SD HH Ave. B W
✓ ✓ - - - - 90.5 87.3

✓ 78.0 71.2 74.2 74.5 - -
✓ ✓ 77.0 70.1 74.7 73.9 - -
✓ ✓ 76.6 69.6 76.5 74.2 90.6 -
✓ ✓ ✓ 76.6 71.2 75.2 74.3 90.3 -
✓ ✓ ✓ 77.0 71.3 75.1 74.5 88.9 -
✓ ✓ ✓ ✓ 77.6 73.5 75.7 75.6 89.5 -
✓ ✓ ✓ 75.1 68.7 72.4 72.1 93.9 89.2
✓ ✓ ✓ ✓ 77.1 74.1 73.7 75.0 94.6 89.1
✓ ✓ ✓ ✓ 74.2 70.7 76.4 73.8 94.1 87.2
✓ ✓ ✓ ✓ ✓ 76.8 72.2 77.1 75.4 92.1 86.3

IV. EVALUATION

This section reports a comparative experiment conducted for
evaluating the proposed regularized multi-task learning method
through ablation study.

A. Experimental Conditions

The RWC Music Database: Popular Music [23] was used for
evaluation. It consists of 100 Japanese popular songs (J-POP)
with human-performed and synthesized drum tracks. We used
64 songs with accurate drum onset annotations and 10 songs
without drum annotations. The stereo signals at a sampling rate
of 44.1 kHz were processed using short-time Fourier transform
(STFT) with a window size of 1024 points and a hop size of
441 points. The left and right channels were concatenated to
form the input matrix X.

Our CRNN consists of common convolutional layers for
feature extraction followed by a bidirectional long short-term
memory (BLSTM) network for drum transcription and a TCN
for metrical analysis (Fig. 2). The convolutional layers, with
a kernel size of 3 × 3, a padding size of 1 × 1, and a stride
of 1, yielded a (512 × 4)-dimensional feature map, on which
a dropout of 30% was applied before feeding it into a linear
layer. The BLSTM network had three layers, each of which had
hidden states of 200 dimensions. The TCN had eleven layers
with a receptive field of about 80 [s]. The weights were set as
follows: λD

BCE=1, λB
BCE=λ

W
BCE=0.1, λD

ACE=1, λB
ACE=λ

W
ACE=0,

and λDB
CCE=λ

DW
CCE=λ

BW
CCE=1. We used AdamW [24] with a learn-

ing rate of γ = 0.001, weight decays parameters of λ = 10−4,
β1 = 0.9, β2 = 0.98, and ε = 10−9 for optimization.

To evaluate the effectiveness of the individual components
of the proposed method, we conducted an ablation study. We
tackled drum transcription and metrical analysis jointly or sep-
arately with or without the element-wise and pairwise regular-
ization terms. Five-fold cross-validation was conducted, where
the performance was evaluated on the 64 songs with drum
annotations. We also compared the proposed method with a
state-of-the-art method [20].

The performances of drum transcription and metrical analy-
sis were evaluated in terms of the F-measure with error toler-
ances of 30 [ms] and 70 [ms], respectively. The beat interval
stability was also evaluated in terms of the CMLt and AMLt

TABLE II
THE PERFORMANCES OF METRICAL ANALYSIS FOR 100 SONGS OF RWC
POPULAR MUSIC DATABASE. BOLD FONTS INDICATE THE BEST VALUES.

Beat Downbeat
F-meas. CMLt AMLt F-meas. CMLt AMLt

Böck et al. [20] 89.5 81.8 91.5 83.1 80.3 88.4
Ours 92.8 85.9 94.3 86.3 81.3 89.4

metrics [25] that consider double/half tempo ambiguity in beat
interpretation. Note that the drum onset annotations might be
inconsistent due to the characteristics of annotators. In the
training phase, the ground-truth onset times were perturbed
by being convolved with a Gaussian distribution with a mean
of 0 [ms] and a standard deviation of 12 [ms]. For data aug-
mentation, the time stretch operation was applied to each song
with a scaling factor drawn from a Gaussian distribution with
a mean of 1 and a standard deviation of 0.1.

B. Experimental Results

As shown in Table I, the multi-task learning approach im-
proved the beat and downbeat detection performances by ap-
proximately 4 and 2 pts, respectively, compared with the single-
task learning approach. Both the elementwise and pairwise reg-
ularizations improved the performance of drum transcription
by approximately 1–3 pts. For metrical analysis, in contrast,
no significant improvement was observed, mainly because the
DBN-based decoding had a dominant impact on the results.
If the naive thresholding was used instead, some performance
gain was obtained (not reported in the table). As shown in
Table II, the configuration that achieved the best performance
of beat detection for all the 100 songs of the RWC Popular
Music Database (the ninth row in Table I) outperformed the
state-of-the-art method [20] by approximately 3 pts higher.

Fig. 4 shows the positive and negative effects of the multi-
task learning. In the left example, since the drum onsets were
located on the beat and tatum grids, the snare drum onsets on
unnatural positions were suppressed successfully. In contrast,
in the right example, although the drum onsets with swing
rhythm were deviated from the beat and tatum grids, they were
encouraged to be synchronized with the grids.

Fig. 5 shows the positive effect of the regularized training.
The histogram of the inter-onset intervals (IOIs) of the hi-hat
onsets had a single sharp peak, meaning that the estimated on-
sets were placed at a constant interval. Such periodicity-aware
regularization, however, might fail to estimate non-regular drum
patterns (e.g., fill-ins) and degrade the performance.

These results suggest the importance of the weight config-
uration according to the target data. One promising solution
worth investigation would be to use the self-attention mecha-
nism for automatically adjusting the weights according to the
regularity of drum patterns.

V. CONCLUSION

In this paper, we presented a multi-task learning approach
to joint drum transcription and metrical analysis based on
the periodicity-aware element-wise and pairwise regularization
terms. Specifically, our method aims to minimize the entropy
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Only drum 
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Multi-task 
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Fig. 4. Examples of drum transcription results obtained with the multi-task
and single-task learning approaches. The performance was improved in the
left example and was degraded in the right example.

Without the regularization

With the regularization

IOI (frames)

Fig. 5. Histograms of inter-onset intervals (IOIs) in frame units computed
from hi-hat onsets detected without/with the regularization (RWC-MDB-P-
2001 No. 11).

of the auto-spectrum computed from each probability sequence
and that of the cross-spectrum computed from each of the
three sequence pairs, because a smaller entropy indicates a
stronger element-wise periodicity or pairwise consistency. We
experimentally showed the effectiveness of using the multi-
task learning and the regularized training for drum transcrip-
tion. The performance of metrical analysis, however, was not
maximized by the concurrent use of these methods. Further
investigation is thus needed to determine the weights of the
loss functions appropriately for each task, compare with other
deep learning methods, and explore a peak detection method
that maximizes the performance of the proposed method. In
addition, we plan to investigate a new regularization term based
on the fractal structure inherent in music.
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