
Recent Development of Open-Source Speech
Recognition Engine Julius

Akinobu Lee∗ and Tatsuya Kawahara†
∗ Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan

E-mail: ri@nitech.ac.jp
† Kyoto University, Kyoto 606-8501, Japan

E-mail: kawahara@i.kyoto-u.ac.jp

Abstract—Julius is an open-source large-vocabulary speech
recognition software used for both academic research and in-
dustrial applications. It executes real-time speech recognition of
a 60k-word dictation task on low-spec PCs with small footprint,
and even on embedded devices. Julius supports standard lan-
guage models such as statistical N-gram model and rule-based
grammars, as well as Hidden Markov Model (HMM) as an
acoustic model. One can build a speech recognition system of his
own purpose, or can integrate the speech recognition capability
to a variety of applications using Julius. This article describes
an overview of Julius, major features and specifications, and
summarizes the developments conducted in the recent years.

I. INTRODUCTION

”Julius”1 is an open-source, high-performance speech recog-
nition decoder used for both academic research and indus-
trial applications. It incorporates major state-of-the-art speech
recognition techniques, and can perform a large vocabulary
continuous speech recognition (LVCSR) task effectively in
real-time processing with a relatively small footprint.

It also has much versatility and scalability. One can easily
build a speech recognition system by combining a language
model (LM) and an acoustic model (AM) for the task, from
a simple word recognition to a LVCSR task with tens of
thousands of words. Standard file formats are adopted to cope
with other standard toolkits such as HTK (HMM Toolkit)[1],
CMU-Cam SLM toolkit[2] and SRILM[3].

Julius is written in pure C language. It runs on Linux, Win-
dows, Mac OS X, Solaris and other unix variants. It has been
ported to SH-4A microprocessor[4], and also runs on Apple’s
iPhone[5]. Most of the research institutes in Japan uses Julius
for their research[6][7], and it has been applied for various
languages such as English, French[8], Mandarin Chinese[9],
Thai[10], Estonian[11], Slovenian[12], and Korean[13].

Julius is available as open-source software. The license term
is similar to the BSD license, no restriction is imposed for
research, development or even commercial purposes2.

The web page3 contains the latest source codes and pre-
compiled binaries for Windows and Linux. Several acoustic
and language models for Japanese can be obtained from the

1Julius was named after “Gaius Julius Caesar”, who was a ”dictator” of
the Roman Republic in 100 B.C.

2See the license term included in the distribution package for details.
3http://julius.sourceforge.jp

������
����	
 ��	

	���������� ����������

����� �!"#$�%&�'(�)"*"+,�&-#�%-"+ ."/+ �!"#0+1)�1&���+'�+�2�32���4�2���''!�%1+��)5
�2�

61)7�17"$��"! �%��#+�%$��"!

�''!�%1+��)
Fig. 1. Overview of Julius.

site. The current development snapshot is also available via
CVS. There is also a web forum for developers and users.

This article first introduces general information and the
history of Julius, followed by its internal system architecture
and decoding algorithm. Then, the model specification is fully
described to show what type of the speech recognition task it
can execute. The way of integrating Julius with other appli-
cations is also briefly explained. Finally, recent developments
are described as a list of updates.

II. OVERVIEW

An overview of Julius system is illustrated in Fig. 1. Given
a language model and an acoustic model, Julius functions as
a speech recognition system of the given task.

Julius supports processing of both audio files and a live
audio stream. For the file input, Julius assumes one sentence
utterance per input file. It also supports auto-splitting of the
input by long pauses, where pause detection will be performed
based on level and zero cross thresholds. Audio input via a
network stream is also supported.

A language model and an acoustic model is needed to run
Julius. The language model consists of a word pronunciation
dictionary and a syntactic constraint. Various types of language
model are supported: word N-gram model, rule-based gram-
mars and a simple word list for isolated word recognition.
Acoustic models should be HMM defined for sub-word units.
It fully supports HTK HMM definition file: any number of

states, any state transition and any parameter tying scheme
can be treated as the same as HTK.

Applications can interact with Julius in two ways, socket-
based server-client messaging and function-based library em-
bedding. In either case, the recognition result will be fed
into the application as soon as the recognition process ends
for an input. The application can get the live status and
statistics of the Julius engine, and control it. The latest version
also supports a plug-in facility so that users can extend the
capability of Julius easily.

A. Summary of Features

Here is a list of major features based on the current version.
Performance:

• Real time recognition of 60k-word dictation on PCs,
PDAs and handheld devices

• Small footprint (about 60MB for 20k-word Japanese tri-
phone dictation, including N-gram of 38MB on memory)

• No machine-specific or hard-coded optimization
Functions:

• Live audio input recognition via microphone / socket
• Multi-level voice activity detection based on power /

Gaussian mixture model (GMM) / decoder statistics
• Multi-model parallel recognition within single thread
• Output N-best list / word graph / confusion network
• Forced alignment in word, phone or HMM-state level
• Confidence scoring
• Successive decoding for long input by segmenting with

short pauses
Supported Models and Features:

• N-gram language model with arbitrary N
• Rule-based grammar
• Isolated word recognition
• Triphone HMM / tied-mixture HMM / phonetic tied-

mixture HMM with any number of states, mixtures and
models supported in HTK.

• Most mel-frequency cepstral coefficients (MFCC) and its
variants supported in HTK.

• Multi-stream HMM and MSD-HMM[14] trained by
HTS[15]

Integration / API:
• Embeddable into other applications as C library
• Socket-based server-client interaction
• Recognition process control by clients / applications
• Plug-in extension

B. History

Julius was first released in 1998, as a result of a study
on efficient algorithms for LVCSR[16]. Our motivation to
develop and maintain such an open-source speech recognition
engine comes from the public requirement of sharing a base-
line platform for speech research. With a common platform,
researchers on acoustic models or language models can easily
demonstrate and compare their works by speech recognition
performances. Julius is also intended for easy development of

speech applications. Now, the software is used as a reference
of the speech technologies.

It had been developed as a part of the free software platform
for Japanese LVCSR funded by IPA, Japan[17] from 1997
to 2000. The decoding algorithm was refined to improve
the recognition performance in this period (ver. 3.1p2)[18].
After that, the Continuous Speech Recognition Consortium
(CSRC)[19] was founded to maintain the software repository
for Japanese LVCSR. A grammar-based version of Julius
named “Julian” was developed in the project, and the al-
gorithms were further refined, and several new features for
a spontaneous speech recognition were implemented (ver.
3.4.2)[20].

In 2003, the effort was continued with the Interactive Speech
Technology Consortium (ISTC)[21]. A number of features
were added for real-world speech recognition: robust voice
activity detection (VAD) based on GMM, lattice output, and
confidence scoring.

The latest major revision 4 was released in 2007. The entire
source code was re-organized from a stand-alone application to
a set of libraries, and modularity was significantly improved.
The details are fully described in section VI.

The current version is 4.1.2, released in February 2009.

III. INSIDE JULIUS

A. System Architecture

The internal module structure of Julius is illustrated in Fig.
2. The top-level structure is “engine instance”, which contains
all the modules required for a recognition system: audio input,
voice detection, feature extraction, language model, acoustic
model and search process.

An “AM process instance” holds an acoustic HMM and
work area for acoustic likelihood computation. The “MFCC
instance” is generated from the AM process instance to extract
a feature vector sequence from speech waveform input. The
“LM process instance” holds a language model and work area
for the computation of the linguistic likelihoods. The “Recog-
nition process instance” is the main recognition process, using
the AM process instance and the LM process instance. These
modules will be created in the engine instance according to
the given configuration parameters. When doing multi-model
recognition, a module can be shared among several upper
instances for efficiency.

B. Decoding Algorithm

Julius performs a two-pass forward-backward search[16].
The overview of the decoding algorithm is illustrated in Fig.
3.

On the first pass, a tree-structured lexicon assigned with
language model constraint is applied with a standard frame-
synchronous beam search algorithm. For efficient decoding,
the reduced LM constraint that concerns only the word-to-
word connection, ignoring further context, is used on this
pass. The actual constraint depends on the LM type: when
using an N-gram model, 2-gram probabilities will be applied

����������	�
�	��
����	�
��	��������	�
�	������������	�
�	������������������������������� ���!!�"##�	�
�	��

$%&'%('%)*+%,(-./.0121/345 65 789:;<=>8?@<ABC D55 ECF8?G
H��IJ�I�K����
L��J!���K���� M�����N����OJ����������P���J��������! Q��R����S��!�����

LTU ��K��J��

V�!J��!
Fig. 2. Internal Structure of Julius.

frame
synchronous
beam search

(1-best)

stack
decoding

search
(N-best)

input
speech

word
sequence

word
trellis
index

word
2-gram

word
3-gramlexicon

Acoustic
Model

Language
Model

(cross word approx.) (no approx.)

context-dependent HMM

Julius

Fig. 3. Decoding Algorithm.

on this pass. When using a rule-based grammar, a word-
pair constraint extracted from the given grammar will be
applied. Many other approximations are introduced on the first
pass for fast and efficient decoding. The cross-word context
dependency is handled with an approximation which applies
only the best model for the best history. Also we assume one-
best approximation rather than word-pair approximation for
the word context approximation[22].

The first pass generates a “word trellis index” at its end.
It is a set of survived word-end nodes per frame, with their
scores and their corresponding starting frames. It will be used
to efficiently look up the word candidates and their scores on
the later pass. Unlike the conventional word-graph rescoring,
the second pass can conduct wider Viterbi scoring and wider
word expansion, which will allow the later pass to overcome
the accuracy loss by the approximations.

On the second pass, full language model and cross-word
context dependency is applied for re-scoring. The search
is performed in the reverse direction, and precise sentence-
dependent Viterbi scores can be obtained by word-level stack
decoding search. The speech input is again evaluated by
connecting with the forward trellis as a result of the first pass.
We enhanced the stack-decoding search by setting an upper

limit of the hypotheses generation count at every sentence
length, to avoid search failures for long inputs.

Julius basically assumes one sentence utterance per input.
However, in natural spontaneous speech such as lectures
and meetings, the input segment is sometimes uncertain and
often gets long. To handle them, Julius has a function to
perform successive decoding with short-pause segmentation,
automatically splitting the long input on the way of recognition
by short pauses. When a short pause is detected, it finalizes
the current search at that point and then re-start recognition
from the point.

IV. SPEECH RECOGNITION SYSTEM BASED ON JULIUS

This section describes specifications of acoustic features,
acoustic model, dictionary and language models supported in
Julius.

A. Feature Extraction

Julius can extract a MFCC based feature vector sequence
from speech input. It supports almost all variations of MFCC
and energy parameters that are covered by HTK: base MFCC
coefficients, energy, 0’th cepstrum and their delta and accelera-
tion coefficients. It also supports utterance-based cepstral mean
normalization (CMN), energy normalization, cepstral variance
normalization (CVN) and MAP-CMN for live input. On live
input, these normalization methods will be approximated by
using the values of the previous input as initial normalization
factors.

The parameter extraction configuration required for the
given acoustic model will be partly set automatically from
the AM header. However, most of the parameter values such
as audio sampling frequency, window shift, window length,
number of filter bank channels should be given manually to
fit the acoustic condition of the acoustic model.

B. Acoustic Model (AM)

Julius supports monophone and triphone HMMs with any
number of mixtures, states, and phone units. It can also handle
tied-mixture models and phonetic tied-mixture models[23].
The current Julius also supports multi-stream HMM, and
MSD-HMM[14] trained by HTS[15]. The output probability
function should be a mixture of Gaussian densities with
diagonal covariances. Speaker adaptation and full covariance
models are not supported yet.

The file format should be in the HTK ASCII format. It can
be converted to the Julius binary file by the tool mkbinhmm
for faster loading at start-up. The tool can also be used to
embed feature extraction parameters into a binary file.

C. Dictionary

The format of the pronunciation dictionary is common to
all LM types. It is based on the HTK dictionary format. Each
pronunciation should be a sequence of sub-word unit names
as defined in the acoustic model. Multiple pronunciations of
a word can be specified as separate entries.

Julius converts pronunciations to a context-aware form (ex.
“a-k+i”) when a triphone model is used. In order to specify

mapping from the logical triphone names in the dictionary to
the defined (physical) model names in the acoustic model, a
one-to-one mapping rule should be given as an “HMMList”
file.

For memory efficiency, the maximum number of lexical
(pronunciation) entries in the dictionary is limited to 65,535 by
default. To use a larger dictionary, Julius should be configured
so at the compilation time.

D. Language Models (LM)

Julius supports speech recognition based on N-gram model,
rule-based grammars and a dictionary alone.

1) N-gram: Arbitrary length of N-gram is supported in
the recent version. Class N-gram is also supported, in which
case the in-class word probabilities should be given not in the
language model but in the dictionary. Note that older versions
(3.x) supports backward 3-gram only.

At the recognition, word 2-gram is used on the first pass and
backward word N-gram is applied on the second pass. Julius
can operate with single N-gram in either forward or backward
direction, in which case it will compute the probabilities
of the another direction using Bayes rule. However, for the
best performance, both forward 2-gram for the first pass and
backward N-gram for the second pass should be provided,
respectively.

The file format should be in the ARPA standard format,
which is the most popular format supported by various lan-
guage model toolkits. Since the ARPA file is a text-based
format and needs much time to parse, Julius provides a tool
“mkbingram” to convert it into the pre-compiled binary
format.

2) Rule-based Grammar: Julius can perform speech recog-
nition based on a written grammar. The file format is an
original one based on a BNF-like form, writing category-level
syntax and per-category lexical entry in separate files. They
should be compiled into a finite state automaton (FSA) and a
recognition dictionary using a script “mkdfa.pl”. Multiple
grammars can be used at a time. In this case, Julius will output
the best hypothesis among all grammars.

A tool to convert the popular HTK standard lattice format
(SLF) file to the Julius FSA grammar file is also available at
the website.

3) Isolated Word Recognition: When giving only a dictio-
nary without any language model, Julius will perform isolated
word recognition. Since the recognition process requires no
inter-word approximation, recognition will ends at the first
pass.

V. APPLICATION DEVELOPMENT WITH JULIUS

Currently, Julius offers several ways to interact with other
applications or to extend its capability.

Julius can be run as a recognition server that receives an
audio stream and sends the events and the results via network
socket. The audio format is a raw audio stream, and the output
format is an XML text. Various events will be sent such as
voice detection events, partial recognition results or the engine

status. Moreover, clients can pause/resume the recognition
process, send a rule-based grammar, or activate/deactivate
the current grammars in Julius. The interaction will be done
immediately without being blocked even if the recognition
process is running.

The core engine is now implemented as a C library. It
can be embedded to other applications. Application programs
can assign callback functions to the main recognition loop to
handle events.

The recent version also has a plug-in facility to extend its
capability. Users can extend Julius with their own plug-in as a
DLL or a shared object. The types of plug-ins currently sup-
ported are extensions for audio input, audio post-processing,
feature extraction, feature extraction post-processing, Gaussian
computation and recognition result processing.

Several sample codes are included in the source archive to
help development. A simple program to conduct speech recog-
nition is located at julius-simple folder. Sample codes
and documents for plug-in are included under plugin folder.
They will be a good starting point for making applications with
Julius.

VI. LATEST VERSION: JULIUS-4

Julius version 3.x was a stand-alone program mainly for
research purpose. As a result of continuous incremental im-
provements for years, it contains many legacy codes and was
not modularized well.

The version 4 of Julius (Julius-4) was released in December
2007. The core engine part was re-written as a C library to be
easily incorporated into other applications. The internal struc-
ture was re-organized and modularized to enhance readability
and flexibility. As a benefit of the modularization, it now
enables multi-model decoding with multiple acoustic models
and/or language models at the same time. The major features
are listed below:

• The core engine as a separate C library
• Grammar-based Julian are integrated
• Decoding with multiple LMs and AMs.
• Support for N-gram longer than 3
• Support for user-defined LM functions
• Confusion network output
• GMM-based VAD and decoder-based VAD[24]
• Performance optimization for memory efficiency
• New tools and functions
• Improved documentation

Julius-4 keeps the full backward compatibility with the older
versions. and can be used as the same way. The performance
of Julius-4.0 is almost same as the old versions, with a slight
memory improvement.

This section summarizes the major features of Julius-4.

A. Re-organized internal structure

The internal structure of Julius has been greatly modified
through an anatomical analysis of source codes. All the global
variables has been gathered, re-organized and encapsulated
into a hierarchical structure to provide much modularity and

��������������
	
����������������������������

���������� !�!"�#��$%& '& ()*+,-./)01-2345 '& ()*+,-./)06767678&&
����������

9::
;:<=>?@AABCADEC?@ F@?>GCBDB>C<=>?@AABCADEC?@H:<=>?@AABCADEC?@676767 676767 676767676767

;IJKBCBC<LD
:MNNBCADEC?@

676767676767

Fig. 4. Multi-model Decoding.

flexibility. This successful modularization also contributes
to other new features in Julius-4, namely the unified LM
implementation and the multi-model decoding.

B. Engine now becomes library: JuliusLib

The core recognition engine now moved into a C library.
In the old versions, the main program consists of two parts: a
low-level library called “libsent” that handles input, output and
model in directory libsent, and the decoder itself in direc-
tory julius. In Julius-4, the decoder part has been divided
into two parts: the core engine part (in directory libjulius)
and the application part (in directory julius). Functions such
as character set conversion, waveform recording, server-client
modules are moved to julius.

The new engine library is called “JuliusLib”. It contains
all recognition procedures, configuration parsing, decoding
and miscellaneous parts required for the speech recognition.
It provides public functions to stop and resume the recog-
nition process, and to add or remove rule-based grammars
and dictionaries to the running process. It further supports
addition/removal and activation/deactivation of models and
recognition process instances, not only at start-up but also
while running.

Julius-4 is re-implemented using the new libraries described
above. It still keeps full backward compatibility with the older
versions. For more information about API and the list of
callbacks, please refer to the HTML documents and other
documents on the website.

C. Multi-model decoding

Julius-4 newly supports multi-model recognition, with an
arbitrary number of AMs, LMs and their combinations. Users
can add, remove, activate and deactivate each recognition
process in the course of the recognition process from the
application side. Fig. 4 illustrates creating multiple instances
corresponding to the multiple model definition given in config-
uration parameters, and their assignment in the engine. LMs of
different types can be used at once. AMs of different feature
parameters can also be used together. The acoustic feature
(MFCC) instances will be created for each parameter type
required by the AMs. Different types and combination of

MFCC calculation, CMN, spectral subtraction, and other front-
end processing can be used. However, the sampling frequency,
window size and window shift should be shared by the AMs.

In multi-model decoding, the first pass will be performed
frame-synchronously for all recognition process instances con-
currently in a single thread. Then, the second pass will be
performed sequentially for each process instance. After all
recognition results are obtained, the engine will output all
results.

D. Longer N-gram support
The old versions support only 3-gram, and always require

two N-gram files, forward 2-gram and backward 3-gram.
Julius-4 now supports arbitrary length of N-gram, and can
operate with only one N-gram in any direction.

When forward N-gram only is given, Julius-4 uses its 2-
gram part on the first pass, and use the full N-gram on the
second pass by calculating backward probabilities from the
forward N-gram using the Bayes rule,

P (w1|wN
2) =

P (w1, w2, ..., wN)
P (w2, ..., wN)

=
ΠN

i=1P (wi|wi−1
1)

ΠN
i=2P (wi|wi−1

2)
.

When only backward N-gram is given, Julius-4 calculates
forward 2-gram from the 2-gram part of the backward N-gram
on the first pass, and applies the full N-gram on the second
pass. When both forward and backward N-gram models are
specified, Julius uses the 2-gram part of the forward N-gram
on the first pass, and the full backward N-gram on the second
pass to get the final result.

The backward N-gram should be trained from the corpus in
which the word order is reversed. When using both forward
N-gram and backward N-gram, they should be trained on the
same corpus with the same cut-off value.

E. User-defined LM function support
Julius-4 allows word probabilities to be given from user-

defined functions. When a set of functions is defined, which
returns an output probability of a word on a given context,
Julius uses the functions to compute the word probabilities
during the decoding. This feature enables incorporating a user-
side linguistic knowledge or constraints directly into the search
stage of the recognition engine.

When users want to use this feature, they need to define
these functions, and register to JuliusLib using an API func-
tion. Also an option -userlm must be specified at start-up
to tell Julius to switch to the registered functions internally.

F. Isolated word recognition
Julius-4 has a dedicated mode for simple isolated word

recognition. Given a dictionary only, it performs one-pass
isolated word recognition.

G. Confusion network output
Julius can output recognition results as a confusion network

using Mangu’s method[25]. The output will present word
candidates at a descending order of the confidence score.
Note that search parameters should be set to search for many
hypotheses to get a large network.

H. Enhanced voice activity detection (VAD)

To improve robustness for real-world speech recognition,
Julius-4 features two new VAD methods. One is a GMM-based
VAD, and the other is called “decoder-VAD”, an experimental
method using acoustic model and decoding status for speech
detection[24].

Currently, both methods are experimental and not ac-
tivated by default. They can be activated by spec-
ifying configuration option --enable-gmm-vad and
--enable-decoder-vad at the compilation time.

I. Miscellaneous updates

• Memory improvement in the lexicon tree.
• A new tool generate-ngram to output random sen-

tence from N-gram
• Fully HTK-compliant dictionary format (output string

field can be omitted)
• Updated all source-code documentation for Doxygen[26]

VII. SUMMARY OF CHANGES

The recent version (as of July 2009) is 4.1.2. The major
changes between milestone versions from 3.4.2 (released on
May 2004) to 4.1.2 are summarized as below.

A. Changes from 4.1 to 4.1.2

• SRILM[3] support
• N-gram size limit expanded to 4 GByte
• Improved OOV mapping on N-gram
• Multiple-level forced alignments at a time
• Faster start-up

B. Changes from 4.0 to 4.1

• Support plug-in extension
• Support multi-stream HMM
• Support MSD-HMM
• Support CVN and VTLN
• Improved microphone API handling on Linux
• Support “USEPOWER=T” as in HTK

C. Changes from 3.5.3 to 4.0

New features:
• Multi-model recognition
• Output each recognition result to a separate file
• Log to a file instead of stdout, or no entire output
• Allow environment variables in jconf file (”$VARNAME”)
• Allow audio input delay time via an environment variable
• Input rejection based on average power (-powerthres,
--enable-power-reject)

• GMM-based VAD
• Decoder-based VAD
• Support N-gram longer than 3-gram
• Support recognition with forward-only or backward-only

N-gram
• Initial support of user-defined LM
• Support isolated word recognition using a dictionary only
• Confusion network output

Compatibility issues:
• Grammar-based Julian is merged to Julius.
• Multi-path mode is integrated, Julius will automatically

switch to the multi-path mode when the AM requires it.
• Module mode enhanced
• Dictionary format becomes the same as HTK
• Dictionary allows quotation

D. Changes from 3.5 to 3.5.3

• Speedup by approx. 30% by code optimization
• Greatly reduced memory access
• New grammar tools to minimize finite state automaton
• New tool slf2dfa to convert HTK SLF file to Julius
• Full support of all variations of MFCC extraction
• MAP-CMN for real-time input
• Parsing feature parameters of HTK Config file
• Embedding feature parameters in binary HMM files

E. Changes from 3.4.2 to 3.5

• Input rejection based on GMM
• Word lattice output
• Recognition with multiple rule-based grammars
• Character set conversion in output
• Use integrated zlib instead of executing external gzip

command
• Integrate all variants (Linux / Windows / Multi-path ...)

into one source tree
• MinGW support
• Source code documentation using Doxygen

VIII. CONCLUSION

This article briefly introduces the open-source speech recog-
nition software Julius and describes its recent developments.
Julius is a product of over eleven year’s work, and the
development still continues on the academic volunteer basis.

Future work should include speaker adaptation, integration
of robust front-end processing, and supporting standard gram-
mar format such as Java speech grammar format (JSGF).

REFERENCES

[1] http://htk.eng.cam.ac.uk/
[2] P.R. Clarkson and R. Rosenfeld. Statistical Language Modeling Using

the CMU-Cambridge Toolkit. In Proc. of ESCA Eurospeech’97, vol.5,
pages 2707–2710, 1997.

[3] A. Stolcke. SRILM - An Extensible Language Modeling Toolkit. In
Proc. ICSLP, pp. 901–904, 2002.

[4] H. Kokubo, N. Hataoka, A. Lee, T. Kawahara and K. Shikano. Real-
Time Continuous Speech Recognition System on SH-4A Microproces-
sor. In Proc. International Workshop on Multimedia Signal Processing
(MMSP), pp. 35–38, 2007.

[5] http://www.creaceed.com/vocalia/
[6] T. Cincarek et al. Development, Long-Term Operation and Portability of

a Real-Environment Speech-oriented Guidance System. In IEICE Trans.
Information and Systems, Vol. E91-D, No. 3, pp. 576–587, 2008.

[7] T. Kawahara, H. Nanjo, T. Shinozaki and S. Furui. Benchmark Test
for Speech Recognition Using the Corpus of Spontaneous Japanese. In
Proc. ISCA & IEEE Workshop on Spontaneous Speech Processing and
Recognition (SSPR), 2003.

[8] D. Fohr, O. Mella, C. Cerisara and I. Illina. The Automatic News
Transcription System: ANTS, some Real Time Experiments. In Proc.
INTERSPEECH, pp. 377–380, 2004.

[9] D. Yang, K. Iwano and S. Furui. Accent Analysis for Mandarin Large
Vocabulary Continuous Speech Recognition. In IEICE Technical Report,
Asian Workshop on Speech Science and Technology, SP-2007-201, pp.
87–91, 2003.

[10] M. Jongtaveesataporn, C. Wutiwiwatchai, K. Iwano and S. Furui.
Development of a Thai Broadcast News Corpus and an LVCSR System.
In ASJ Annual meeting, 3-10-1, 2008.

[11] T. Alumäe. Large Vocabulary Continuous Speech Recognition for
Estonian using Morphemes and Classes. In Proc. ICSLP, pp. 389–392,
2004.

[12] T. Rotovnik, M. S. Maucec, B. Horvat and Z. Kacic. A Comparison of
HTK, ISIP and Julius in Slovenian Large Vocabulary Continuous Speech
Recognition. In Proc. ICSLP, pp. 671–684, 2002.

[13] J.-G. Kim, H.-Y. Jung, H.-Y. Chung. A Keyword Spotting Approach
Based on Pseudo N-Gram Language Model. In Proc. SPECOM, pp.
256–259, 2004.

[14] K. Tokuda, T. Masuko, N. Miyazaki and T. Kobayashi. Hidden Markov
Models Based on Multi-Space Probability Distribution for Pitch Pattern
Modeling. In Proc. IEEE-ICASSP, Vol.1, pp. 229–232, 1999.

[15] http://hts.sp.nitech.ac.jp/
[16] A. Lee, T. Kawahara and S. Doshita. An Efficient Two-pass Search

Algorithm using Word Trellis Index. In Proc. ICSLP, pp. 1831–1834,
1998.

[17] T. Kawahara, et al. Free Software Toolkit for Japanese Large Vocabulary
Continuous Speech Recognition. In Proc. ICSLP, vol. 4, pp. 476–479,
2000.

[18] A. Lee, T. Kawahara and K.Shikano. Julius – an Open Source Real-
Time Large Vocabulary Recognition Engine. In Proc. EUROSPEECH,
pp. 1691–1694, 2001.

[19] A. Lee et al. Continuous Speech Recognition Consortium — an Open
Repository for CSR Tools and Models —. In Proc. IEEE International
Conference on Language Resources and Evaluation, pp. 1438–1441,
2002.

[20] T.Kawahara, A.Lee, K.Takeda, K.Itou and K.Shikano. Recent Progress
of Open-Source LVCSR Engine Julius and Japanese Model Repository.
in Proc. ICSLP, pp. 3069–3072, 2004.

[21] http://www.astem.or.jp/istc/index e.html
[22] R.Schwartz and S.Austin. A Comparison of Several Approximate

Algorithms for Finding Multiple (N-best) Sentence Hypotheses. In Proc.
IEEE-ICASSP, Vol.1, pp. 701–704, 1991.

[23] A.Lee, T.Kawahara, K.Takeda and K.Shikano. A New Phonetic Tied-
Mixture Model for Efficient Decoding, In Proc. IEEE-ICASSP, Vol.3,
pp. 1269–1272, 2000.

[24] H. Sakai et al. Voice Activity Detection Applied to Hands-Free Spoken
Dialogue Robot based on Decoding using Acoustic and Language
Model. In Proc. ROBOCOMM), pp. 1–8, 2007.

[25] L. Mangu, et al. Finding Consensus in Speech Recognition: Word
Error Minimization and Other Applications of Confusion Network. In
Computer Speech and Language, vol. 14, no. 4, pp. 373–400, 2000.

[26] http://www.doxygen.org/

	pg131: 131
	pg132: 132
	pg133: 133
	pg134: 134
	pg135: 135
	pg136: 136
	pg137: 137

