
Combining Slot-based Vector Space Model for
Voice Book Search

Cheongjae Lee and Tatsuya Kawahara and Alexander Rudnicky

Abstract We describe a hybrid approach to vector space model that improves ac-
curacy in voice search for books. We compare different vector space approaches
and demonstrate that the hybrid search model using a weighted sub-space model
smoothed with a general model and a back-off scheme provides the best search per-
formance on natural queries obtained from the Web.

1 Introduction

The book shopping domain poses interesting challenges for spoken dialog systems
as the core interaction involves search for an often under-specified item, a book
for which the user may have incomplete or incorrect information. Thus, the system
needs to first identify a likely set of candidates for the target item, then efficiently
reduce this set to match that item or items originally targeted by the user. This part of
the process is characterized as “voice search” and several such systems have been
described (Section 2). In this paper we focus on the voice search algorithm and
specifically on two sources of difficulty: users not having an exact specification for
a target, and queries being degraded through automatic speech recognition (ASR)
and spoken language understanding (SLU) errors.

Cheongjae Lee
Academic Center for Computing and Media Studies, Kyoto University, Kyoto, Japan, e-mail:
lcj80@ar.media.kyoto-u.ac.jp

Tatsuya Kawahara
Academic Center for Computing and Media Studies, Kyoto University, Kyoto, Japan, e-mail:
kawahara@ar.media.kyoto-u.ac.jp

Alexander Rudnicky
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA, e-mail: alex@
cs.cmu.edu

27

28 Lee et al.

One of the major problems is that users may not have the exact information
about a book. For example, if the correct book title is “ALICE’S ADVENTURES
IN WONDER-LAND AND THROUGH THE LOOKING-GLASS, the user may
not remember the entire title and might say “I don’t know the whole title but it’s
something like ALICE ADVENTURE”. We previously found that 33% of 200 re-
spondents in a survey did not have the complete information. Moreover, many titles
are simply too long to say even though the user might know the exact title (in our
database the longest title has 38 words). Thus, users often provide a few keywords
instead of exact title. There are additional peculiarities. For instance, the title “MISS
PARLOA’S NEW COOK BOOK” is a book by Ms. Parloa in the cookbook category,
but this title contains its author’s name and the category. These problems may cause
degradation in a system that attempts to parse the input. The problem is exacerbated
by the large number of eBooks as well as inconsistencies in the database 1.

To address these problems, this paper presents a robust search algorithm based on
sub-space models for voice search applications. Specifically, we propose a hybrid
approach which combines slots-based models with the general models as a back-off.

2 Related Work

Voice search [6] has been used in various applications: automated directory assis-
tance system [8], consumer rating system [9], multimedia search [4], and book
search [3]. Early voice search systems primarily focused on issues of ASR and
search problems in locating business or residential phone listings [8]. Then, it has
been extended to general web search such as Google’s. Recent voice search systems
have been applied to search for entries in large multimedia databases [4]. Although
a simple string matching technique was used to measure the similarity of an ASR
output string to entity values in the database [3], vector space models (VSM) have
been widely used [8, 9]. We also propose a hybrid search model using slot-based
VSMs and a back-off scheme to improve the search accuracy.

3 Data Collection

3.1 Backend Database

Our system contains a relational database (RDB) consisting of 15,088 eBooks, sam-
pled randomly from the Amazon Kindle Book website. For each book we harvested
17 attributes including its title, authors, categories, price, sales rank. Although many
attributes can be used to search for appropriate books, it is not necessarily practi-

1 Currently, 800,126 eBooks are available in the Amazon Kindle Store
[http://www.amazon.com/Kindle-eBooks/, retrieved January 6th, 2011]

Combining Slot-based Vector Space Model for Voice Book Search 29

Slots Title Author Category

Max. Length 38 10 5
Avg. Length 6.99 2.25 1.53
Voca. Size 13708 8159 1002

Table 1 Statistics of the book database.

cal to handle all possible attributes. To define the set of slots for use in the system,
we surveyed 221 persons on which information they typically have when they buy
eBooks. Note that the respondents had previously bought eBooks.The top three were
title (31.99%), authors (26.10%), and category (14.73%). Consequently, we focus
on these three slots. Table 1 shows the statistics of the book database used in our
system. These contribute 20,882 unique words to the system vocabulary.

3.2 Query Collection using Amazon Mechanical Turk

A key challenge in building a voice search system is defining a habitable user lan-
guage prior to the point at which a prototype system is available to collect actual
user data. Often the procedure consists of the developer and a few other volunteers
generating likely inputs as language data. This approach necessarily introduces a
sampling bias. We sought to improve this sample diversity by using the Amazon
Mechanical Turk (MTurk) service to obtain user utterances at a low cost. MTurk is
an on-line marketplace for human workers (turkers) who perform “human intelli-
gence tasks” (HITs) in exchange for small sums of money [2].

We created HITs to elicit utterances, providing metadata consisting of title, au-
thors, and a category. Turkers were asked to formulate a response to the question
“how can I help you?” posed by a hypothetical human bookstore clerk. A typical
query might be “I AM LOOKING FOR ALICE IN WONDER-LAND BY CAR-
ROLL”. Although we asked that the turkers think in terms of a spoken query, it is
important to note that the queries collected were written, not spoken.

In addition, although we have been developing the whole voice search system
in which users can find the target book by interacting with the system, the current
queries were not in the context of a dialog system, but appeared at the first turn in a
dialog. We have focused on the first user’s turn because the first queries should be
well-processed for efficient interaction.

4 Book Search Algorithm

The search problem in our system is to return a relevant set of books given noisy
queries. In this section, we describe how to search for relevant books in voice book
search.

30 Lee et al.

4.1 Baseline Vector Space Model (VSM)

Our vector-space search engine uses a term space, where each book is represented
as a vector with specific weights in a high-dimensional space (vi). A query is also
represented as the same kind of vector (vq). The retrieved list of book is created by
calculating the cosine similarity, s(vq,vi) between two vectors as follows:

s(vq,vi) =
vq · vi

∥vq∥∥vi∥
(1)

If the vectors are normalized, it is possible to compute the cosine similarity as the
dot product between the unit vectors.

s(vq,vi) = v̂q · v̂i (2)

This formulation allows for rapid search, important as there are many vectors to
compute for each query.

We use stemming to compact the representation, but we do not eliminate stop
words as some stop words are necessary and meaningful for identifying relevant
books. For example, some titles consist of only stop words such as “YOU ARE
THAT” and “IT”. They will not be indexed correctly if stop words are filtered out.

There are several different ways of assigning term weights but not all are appro-
priate for this task. For example, TFxIDF does not work well for book search since
most values and queries are too short to estimate reliable weights. We used a sim-
ple term count weight to represent term vectors; weights indicating the occurrence
count for a given term.

In the conventional single vector space model (here, SVSM), all terms in differ-
ent slots are indexed together over a single term space and every term is equally
weighted regardless of its slot name. In such a model, slot names may not be nec-
essary for book search because all query terms are integrated into a single query
vector. This model can be robust against SLU errors in which the slot names are
incorrectly extracted. This model might also be adequate for books in which the
title includes its author’s name and category. However, it cannot capture inter-slot
relationships. For example, when some users who provides a mixed category query
(“A MYSTERY BY CHRISTIE”).

4.2 Multiple VSM

We also consider a multiple VSM model (MVSM) in which each slot j is indepen-
dently indexed over sub-spaces, and each slot-based model is then interpolated with
slot-specific weights, w j, as follows:

l∗ = argmax
l

∑
j

w j · s j(vq j,v j) (3)

Combining Slot-based Vector Space Model for Voice Book Search 31

Fig. 1 The strategy of database search (IG: In-grammar, OOG: Out-of-grammar).

Each query is parsed using the Phoenix semantic parser [7]. The slot-based vector
vq j for MVSM is generated by slot values extracted by the parser (Figure 1).

Although the interpolation weights w j can usually be set empirically or by using
held-out data, these weights can be modified based on a user’s preferences or on
confidence scores derived from speech recognition. For instance, if the slots were
unreliable, the slot values could be less weighted for the book search. In this work,
the weights w j were set based on the slot preferences that users expressed in our
survey (see Section 3.1).

For unfilled slots, the weight is set to 0 and the weights are renormalized dynam-
ically according to the current slot-filling coefficient (f j) that is assigned a value of
one if the slot name j is filled, as follows:

ŵ j =
∑k fk ·wk

f j ·w j
(4)

MVSM can be easily tuned to improve the quality of list generation. Neverthe-
less, incorrect word-to-slot mapping could degrade search performance relative to
SVSM since MVSM relies on this mapping.

32 Lee et al.

4.3 Hybrid VSM and a Back-off Scheme

Finally, we propose a hybrid search model (HVSM) in which SVSM and MVSM are
linearly interpolated with a specific weight. We expect that HVSM can compensate
for the individual drawbacks of the SVSM and MVSM models, though at the cost
of additional computation.

Some queries may be out-of-grammar (OOG) and do not result in a parse. In this
case, SVSM can be used as a back-off search model in which all terms in the query
are converted into an input vector without the slot information allowing search to be
carried out.

5 Search Evaluation

5.1 Experiment Set-up

We use two evaluation metrics widely used in information retrieval. One is precision
at n (P@n), which represents the number of correct queries having the answer in
the top n relevant items divided by the total number of queries. The other is mean
reciprocal rank (MRR), which indicates the average of the reciprocal ranks of search
results for a sample of queries [5].

In reality there may be multiple correct answers in a list, when users do not
have the exact book in their mind. For example, some users can search for any
fictions without an exact book in their mind. Because it is difficult to automatically
determine the relevance relationship between the queries and the lists, we identified
a single correct book corresponding to each query.

We collected 948 textual queries in MTurk (Section 3.2). We then manually cre-
ated a grammar covering observed query patterns (e.g., “I’D LIKE A BOOK BY
[AUTHOR]”), but sub-grammars for the slot values were automatically generated
from the book database. To define the sub-grammars, the book titles were tokenized
into a bag of words; title queries have many combinations of words regardless of
their orders and grammars because users can say content words (e.g. ‘ALICE’, ‘AD-
VENTURE’, ‘WONDERLAND’, etc) without functional words (e.g. ‘IN’, ‘OF’,
‘THROUGH’, etc). The author names were divided into the first name, the middle
name, and the last name because users man say either the full name or a partial
name. For example, either ‘LEWIS’, ‘CARROLL’, or ‘LEWIS CARROLL’ may be
spoken when users are looking for books by ‘LEWIS CARROLL’. Note that the 661
books used for collecting the queries were different from the books used to make
the evaluation sub-grammars.

Parsing with the resulting grammar does not always map slot information cor-
rectly, even if the query is fully parsed; therefore, SLU will introduce errors even
with correct input. Out of 948 test queries, 392 queries had no parse results due
to lack of coverage. The F1 score of the semantic parser on 556 parsed queries is

Combining Slot-based Vector Space Model for Voice Book Search 33

Type #Queries Avg. Words Avg. Slots

Parsed 556 12.01 1.97
Unparsed 392 15.77 2.10

Total 948 13.56 2.02

Table 2 Statistics of the queries collected in MTurk. #Queries means the number of queries given
the query type. Avg. Words and Avg. Slots represent the average number of words and slots in the
queries, respectively.

Query Type SVSM (naı̈ve) SVSM (parsed) MVSM HVSM
P@100 MRR P@100 MRR P@100 MRR P@100 MRR

Parsed 0.8849 0.6048 0.9137 0.7080 0.8327 0.6905 0.9335 0.7710
Unparsed 0.8087 0.5386 - - - - - -

Total 0.8534 0.5774 0.8703 0.6380 0.8228 0.6296 0.8819 0.6763

Table 3 Evaluation results on textual queries (WER=0%). SVSM (naı̈ve) refers to SVSM with the
whole query.

75.20% in which the slot values are partially matched by using the cosine similarity
between the reference and the hypothesis because the slot values do not necessarily
exactly match the information in the database. For instance, “ALICE” or “ADVEN-
TURE” may be individually meaningful to search for the relevant books although
“ALICE’S ADVENTURE” might not be parsed from the utterance “I AM LOOK-
ING FOR ALICE’S ADVENTURE BY CARROLL”. Table 2 shows the statistics
of our test queries.

5.2 Evaluation on Textual Queries

To evaluate the search performance on the textual queries collected through MTurk,
we used parsed, unparsed, and total queries (Table 3). First, these results show that
the use of SLU result can improve the search accuracy. Although the raw queries
without SLU results could be used for the input of the vector space model, parsed
queries shows better performances over different models. In addition, SLU results
may be necessary to manage subsequent dialog, such as confirming the slot values
and narrowing the candidate items. Next, HVSM shows the best performance on
parsed and total queries. This means that slot information in MVSM may be useful
to search more precisely in an actual system and that SVSM, not considering slot
names, may be a necessary adjunct to overcome SLU errors. Finally, the results also
show the back-off scheme is effective on unparsed inputs since it can return the
relevant items even if the current query was OOG.

34 Lee et al.

Query Type SVSM (naı̈ve) SVSM (parsed) MVSM HVSM
P@100 MRR P@100 MRR P@100 MRR P@100 MRR

Parsed 0.8410 0.5526 0.8619 0.6519 0.8033 0.6211 0.8954 0.7037
Unparsed 0.8152 0.5694 - - - - - -

Total 0.8217 0.5652 0.8270 0.5902 0.8122 0.5802 0.8354 0.6022

Table 4 Evaluation results on noisy queries (WER=23.94%). SVSM (naı̈ve) refers to SVSM with
the whole query.

5.3 Evaluation on Noisy Queries

We generated noisy queries by using a simple ASR error simulator [1] applied to the
textual queries. These are not real spoken queries, but artificially simulated queries
given both a specific word error rate (WER) and error type distribution. We prelimi-
narily evaluated the search performance on these queries (WER=23.94%) although
simulated queries may differ from real queries produced in real ASR (Table 4). Out
of 948 test queries, 239 queries had parse results and the F1 score on parsed queries
is 64.30%. The decrease in the ratio of parsed queries had an adverse effect in the
performance of the proposed method. However, the HVSM still shows the best per-
formance.

6 Conclusion and Discussion

We propose a hybrid approach to voice search using an effective vector space model,
HVSM. HVSM provides the best performance on natural queries sourced through
MTurk. This approach can consider the slot information and overcome OOG prob-
lems.

Some issues have yet to be resolved. The main issue is evaluating the book search
model on spoken queries and not typed queries. We have collected speech data as
spoken queries using MTurk and are investigating various ASR hypothesis struc-
tures (e.g. n-best list) as well as confidence scores that might be incorporated into
our proposed model to realize robustness.

References

[1] Jung, S., Lee, C., Kim, K., Lee, G.G.: Data-driven user simulation for automated
evaluation of spoken dialog systems. Computer Speech and Language 23(4),
479–509 (2009)

[2] Marge, M., Banergee, S., Rudnicky, A.I.: Using the amazon mechanical turk for
transcription of spoken language. In: Proc. ICASSP, pp. 5270–5273 (2010)

Combining Slot-based Vector Space Model for Voice Book Search 35

[3] Passonneau, R.J., Epstein, S.L., Ligorio, T., Gordon, J.B., Bhutada, P.: Learning
about voice search for spoken dialogue systems. In: Proc. NAACL, pp. 840–848
(2010)

[4] Song, Y.I., Wang, Y.Y., Ju, Y.C., Seltzer, M., Tashev, I., Acero, A.: Voice search
of structured media data. In: Proc. IEEE ICASSP, pp. 3941–3944 (2009)

[5] Voorhees, E.M., Tice, D.M.: The trec-8 question answering track evaluation. In:
Proc. Text Retrieval Conference TREC-8, pp. 83–105 (1999)

[6] Wang, Y.Y., D.Yu, Ju, Y.C., Acero, A.: An introduction to voice search. IEEE
Signal Processing Magazine 25(3), 29–38 (2008)

[7] Ward, W., Issar, S.: Recent improvements in the cmu spoken language under-
standing system. In: Proc. ARPA Human Language Technology workshop, pp.
213–216 (1994)

[8] Yu, D., Ju, Y.C., Wang, Y.Y., Zweig, G., Acero, A.: Automated directory assis-
tance system. In: Proc. INTERSPEECH, pp. 2709–2712 (2007)

[9] Zweig, G., Nguyen, P., Ju, Y.C., Wang, Y.Y., Yu, D., Acero, A.: The voice-rate
dialog system for consumer ratings. In: Proc. INTERSPEECH, pp. 2713–2716
(2007)

