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ABSTRACT

Automatic speech recognition (ASR) results contain not only
ASR errors, but also disfluencies and colloquial expressions
that must be corrected to create readable transcripts. We
take the approach of statistical machine translation (SMT) to
“translate” from ASR results into transcript-style text. We in-
troduce two novel modeling techniques in this framework: a
context-dependent translation model, which allows for usage
of context to accurately model translation probabilities, and
log-linear interpolation of conditional and joint probabilities,
which allows for frequently observed translation patterns to
be given higher priority. The system is implemented using
weighted finite state transducers (WFST). On an evaluation
using ASR results and manual transcripts of meetings of
the Japanese Diet (national congress), the proposed methods
showed a significant increase in accuracy over traditional
modeling techniques.

Index Terms— speaking style transformation, log-linear
models, weighted finite state transducers

1. INTRODUCTION

The task of automatic speech recognition (ASR) is conven-
tionally modeled as finding the verbatim utterance V given
the acoustic signal X . A statistical model is created, and a
decoder searches for utterance V̂ that maximizes P (V |X).
However, ASR results often contain disfluencies, redundant
or colloquial expressions, and dropped words, in addition to
ASR errors. These phenomena must be corrected in order to
create readable, natural transcripts from ASR results.

A reasonably large body of work has been conducted
on correcting these phenomena automatically, with a par-
ticular focus on disfluency deletion and punctuation inser-
tion [1, 2, 3]. However, in addition to disfluency deletion
and punctuation insertion, human editors make a number of
other edits, including correction of colloquial expressions
and dropped words. Handling these phenomena is particu-
larly important in formal settings such as public speeches and
congressional meetings, where disfluencies and repairs are
less frequent than in conversational speech, but the resulting
transcript must be grammatically and stylistically correct.

Previous research on handling the arbitrary transforma-
tions necessary for creation of formal transcripts has used
techniques from statistical machine translation (SMT), treat-
ing verbatim and clean transcripts as different languages and
“translating” between them. Shitaoka et al [4] presented a
noisy-channel model for speaking style transformation (SST).
We expanded this model through a weighted finite state trans-
ducer (WFST) implementation and the introduction of a vari-
ety of features in a log-linear framework [5].

This paper addresses enhancement of the translation
model for finite-state SMT-based SST. First, we review the
traditional noisy-channel and a context-dependent joint prob-
ability model previously proposed for finite-state machine
translation [6]. Then, we propose two improvements to
the existing methods. The first method allows for use of
a context-dependent translation model in the noisy-channel
framework by transforming context-dependent joint proba-
bilities into conditional probabilities. The second method
allows greater emphasis to be placed on frequent translation
patterns by log-linearly interpolating the joint and conditional
probability models. An evaluation is performed on commit-
tee meetings from the Japanese Diet (national congress),
and the proposed methods show significant improvements in
accuracy for both manual transcripts and ASR results.

2. MODELS FOR SPEAKING STYLE
TRANSFORMATION (SST)

2.1. Noisy-Channel Modeling

SMT-based SST transforms an actual utterance (or ASR re-
sults) V into transcript-style text W by creating a statistical
model for P (W |V ), and searching for the Ŵ that maximizes
P (W |V ) for any given V . A parallel corpus of aligned sen-
tences is used to estimate the parameters of the model. Be-
cause the size of available parallel corpora is often dwarfed
by the size of available clean transcripts, Bayes’ law is used to
decompose P (W |V ) into the translation model (TM) proba-
bility Pt(V |W ) and language model (LM) probability Pl(W )

Ŵ = argmax
W

Pt(V |W )Pl(W ). (1)
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While the TM must be trained on a parallel corpus (indicated
by the subscript t), the LM can utilize a larger body of clean
transcripts (subscript l). Models decomposed in this manner
are often called noisy-channel models, and are used in most
previous research on SST [1, 3, 4].

Sentence TM probabilities can be approximated as the
product of word TM probabilities to simplify parameter es-
timation

Pt(V |W ) ≈
∏

i

Pt(vi|wi). (2)

Word TM probabilities are determined using maximum like-
lihood estimation.

To handle insertions and deletions, the empty string ε is
treated as a word in the vocabulary, and probabilities Pt(v|ε)
and Pt(ε|w) are calculated. To handle one-to-many substitu-
tions (e.g. “don’t” → “do not”), common multi-word phrases
are treated as individual vocabulary words. The segmenta-
tion of the target sentence into these words is determined by
a unigram segmentation model.

2.2. Joint Probability Modeling

While word translation probabilities were assumed to be inde-
pendent in the previous section, in many cases the translation
probability is actually highly context dependent (e.g. whether
“like” is a filler or function word, etc.). One method for ex-
pressing context directly in the TM is the GIATI method [6].
GIATI skips the step of noisy-channel decomposition and di-
rectly models the joint probability Pt(W,V ). By limiting the
search space so that V is the source sentence,

Ŵ = argmax
W

Pt(W, V )

is ensured to give the same result as Equation (1).

GIATI models the joint probability by assuming align-
ments are monotonic, an assumption that generally holds in
the SST task as there is little non-monotonic permutation.
The source sentence V = v1, . . . , vk and target sentence
W = w1, . . . , wk are represented as a string of symbols
Γ = γ1, . . . , γk, where γi = 〈vi, wi〉. Using these mono-
tonic alignments, a smoothed n-gram model is trained over
a corpus of Γ strings. Pt(W, V ) is approximated using the
following equation:

Pt(W, V ) = Pt(Γ) ≈
k∏

i=1

Pt(γi|γi−n+1, . . . , γi−1). (3)

2.3. Context-Dependent Translation Modeling

While joint probability models provide an effective way to
handle context, they also leave no room for use of large-scale
non-parallel data through the LM probability Pl(W ). We pro-
pose a technique for approximating a context-dependent TM
probability from GIATI probabilities. This allows for the cre-
ation of a model that can both consider context when choosing

translation probabilities, and use non-parallel data to compen-
sate for sparsity in the parallel corpus.

We first note that Pt(V |W ) can be modeled sequentially:

Pt(V |W ) =
k∏

i=1

Pt(vi|v1, . . . , vi−1, w1, . . . , wk, )

=
k∏

i=1

Pt(vi|γ1, . . . , γi−1, wi, . . . , wk).

Further, we assume that vi does not depend on any w greater
than wi, and use an n-order Markov model to limit the length
of the considered history:

Pt(V |W ) ≈
k∏

i=1

Pt(vi|γi−n+1, . . . , γi−1, wi). (4)

Equation (4) can further be transformed into

Pt(V |W ) ≈
k∏

i=1

Pt(γi|γi−n+1, . . . , γi−1)
Pt(wi|γi−n+1, . . . , γi−1)

. (5)

The denominator of this equation is the sum of the n-gram
probabilities for γj where wj = wi

Pt(wi|γi−n+1, . . . , γi−1) =
∑

γj∈{γ̃:w̃=wi}
Pt(γj |γi−n+1, . . . , γi−1). (6)

Because the numerator of Equation (5) and each element
in the sum of Equation (6) have the same form as the n-gram
probabilities in Equation (3), Pt(V |W ) can be estimated us-
ing the n-gram probabilities obtained by the GIATI method.
This context-dependent model for Pt(V |W ) can be used
along with LM probability Pl(W ) in Equation (1).

2.4. Log-Linear Interpolation with Joint Probabilities

While the conditional model has the advantage of allowing
the usage of non-parallel text, it lacks a model of overall trans-
lation pattern frequency. For example, if there is a pattern γx

with counts ct(γx) = 100, ct(wx) = 1000, and a pattern γy

with counts ct(γy) = 1, ct(wy) = 10, both will be given the
same probability

Pt(vx|wx) = Pt(vy|wy) = 0.1

even though the less frequent γy may simply be the result
of semi-random variance in sparse training data. Infrequent
patterns are particularly unreliable when dealing with ASR
data, which is highly inconsistent.

While Pt(vx|wx) and Pt(vy|wy) are equal, Pt(γx) will
be 100 times larger than Pt(γy). Thus, the joint probabil-
ity can be used as a source of information about translation
pattern frequency. We propose a model M(W, V ) that uses
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Table 1. Size of the test set, and number of transformations

necessary for the manual transcriptions and ASR results.

Turns 1,023

Words 300,059

Commas 20,629

Periods 7,196

Manual ASR

Deletions
Fillers 22,520 19,468

Non-fillers 24,450 42,105

Substitutions 4,954 28,503

Insertions 4,584 11,332

log-linear interpolation [7] to combine the LM, TM, and joint
probabilities, thus capturing this frequency information

M(W,V ) =

λ1logPl(W ) + λ2logPt(V |W ) + λ3logPt(W,V )
(7)

Note that while setting λ3 = 0 is an extension to the
naive noisy-channel model in Equation (1), setting λ2 = 0
and interpolating only the first and third elements is nei-
ther theoretically correct nor practical. From the theoretical
standpoint, combining Pl(W ) and Pt(W, V ) can in no way
derive P (W |V ), the posterior function that we are trying
to optimize. Practically, a model created in this way over-
aggressively deletes words, resulting in accuracy no better
than the standard models. It is for this reason that the condi-
tional model introduced in the previous section is necessary,
even when interpolating with the joint probability.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Setup

The proposed system was trained and tested on a corpus of
committee meetings of the Japanese Diet (national congress).
With the official Diet transcripts as the final target, separate
tests were conducted on both manually-created verbatim tran-
scripts and ASR results as input. Punctuation was treated the
same as any other word in the translation model, but a symbol
indicating pauses of greater than 200ms was included in the
ASR output to provide information for punctuation insertion.
ASR was performed with a system dedicated to this task [8],
and an ASR WER of 17.1% was achieved. A summary of the
test set can be found in Table 1.

A corpus of 158M words of official Diet transcripts was
used to train the LM. A smaller 2.83M word parallel corpus
was used for training of the TM. Log-linear weights were
tuned on a set of held-out data consisting of 66.3k words.

3.2. Training/Decoding

The LM was a Kneser-Ney smoothed 3-gram. This configu-
ration was used for all noisy-channel models regardless of the
TM order.

Table 2. Each model, whether it is log-linear (LL), and its

WER for each TM order. Italics are statistically significantly

different from the baseline.

Manual Transcripts (18.62% Unedited)

Model LL 1-gram 2-gram 3-gram

Noisy 6.51% 5.33% 5.32%
Noisy LL � 5.99% 5.15% 5.13%
Joint 9.89% 4.70% 4.60%
Noisy+Joint � 5.81% 4.12% 4.05%

ASR Results (36.10% Unedited)

Model LL 1-gram 2-gram 3-gram

Noisy 21.83% 21.00% 21.09%
Noisy LL � 21.63% 20.97% 21.09%
Joint 28.61% 22.62% 21.98%

Noisy+Joint � 21.32% 20.04% 20.03%

The TM n-grams were also Kneser-Ney smoothed, and
orders 1-3 were tested (4-grams were inferior to 3-grams for
all models). For the system using manual transcripts as in-
put, a parallel corpus of verbatim and official transcripts was
used as TM training data. Likewise, when using ASR results
as input, a corpus of ASR results and official transcripts was
used for training the TM1. Word alignment was performed
by first aligning words to minimize edit distance, after which
words in non-matching sections were aligned using the EM
algorithm to minimize the entropy of the joint TM.

The TM, LM, joint, and segmentation models were each
expressed as separate WFSTs, and were composed into an
overall model using the OpenFst toolkit [9]. Decoding was
performed using a beam-search WFST decoder, Kyfd2. Log-
linear weights were trained using the minimum error rate
training tool included in the Moses SMT toolkit [10].

3.3. Effect of Translation Models

Table 2 shows results using four separate models: the noisy-
channel model of Equation (5), a noisy-channel model with
separate log-linear weights for the TM and LM (Equation (7)
with λ3 fixed at 0), the joint probability model of Equation
(3), and the noisy-channel/joint model of Equation (7). Be-
cause the 1-gram noisy-channel model is equivalent to tradi-
tional noisy-channel models, it is used as a baseline.

The 3-gram noisy-channel/joint model performed best,
achieving a WER of 4.05% over manual transcriptions and
20.03% over ASR results. This is a statistically significant
gain over the baseline values (6.51% and 21.83% respec-
tively) according to the two-proportion z-test at 99% confi-
dence. The proposed context-dependent TM made a large

1A system trained with manual transcripts performed ≈ 3% absolute

WER worse, largely because models trained on ASR results are better at

inserting punctuation, as well as correcting homonyms and ASR errors.
2http://www.phontron.com/kyfd
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Fig. 1. Effect of corpus size for manual transcripts.

Fig. 2. Effect of corpus size for ASR results.

contribution, resulting in significant gains for both ASR and
manual transcripts.

The simple joint probability models (excluding the context-
independent 1-gram) performed well on the manual tran-
scripts, but could not outperform the baseline on ASR results.
This is because it encountered sparsity issues over the in-
consistent data, and was not able to utilize the LM trained
with large amounts of data as a fallback. However, when
the joint and noisy-channel models were interpolated, further
gains were observed, particularly for the 2-gram and 3-gram
models where the pattern frequency information provided by
the joint probability helped relieve sparseness problems.

3.4. Effect of Corpus Size

We also performed an investigation on the effect of the size
of the parallel corpus used in TM training. The results are
summarized in Fig. 1 and 2.

First, while noisy-channel models perform better than
joint models for small parallel corpora (due to the use of large
amounts of clean data), joint models improve at a faster rate
as the amount of data increases, even surpassing the noisy-
channel model in the manual transcipts of Figure 1. The

model that interpolates joint and noisy-channel probabilities
displays both good performance on small data and continuing
improvment, achieving a low WER over all data sizes.

Second, accuracy continues to improve for the joint mod-
els even at 2.32M words, indicating that it may be useful to
collect more data. We plan to create more ASR results for
training the SST system with ASR input.

Finally, for most models, the error rate decreases rapidly
for corpus sizes under 17k words, and more slowly after 17k
words. This suggests that common patterns like filler dele-
tions are learned after 17k words, and any additional data after
that helps train more difficult context-dependent patterns.

4. CONCLUSION

This paper presented techniques to model context and trans-
lation pattern frequency for SMT-based SST. A system us-
ing both of these techniques showed a statistically significant
improvement over a traditional noisy-channel model for both
manual transcripts and ASR results. A promising future re-
search direction is the integration of the SST module with a
WFST-based recognition engine to find globally optimal out-
put given acoustic features. We also plan to combine the fea-
tures introduced in [5] with the translation models presented
here and investigate their mutual effect.
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