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ABSTRACT

A combination of the cross-validation EM (CV-EM) algo-
rithm and the cross-validation (CV) Gaussian mixture opti-
mization method is explored. CV-EM and CV Gaussian mix-
ture optimization are our previously proposed training algo-
rithms that use CV likelihood instead of the conventional train-
ing set likelihood for robust model estimation. Since CV-EM
is a parameter optimization method and CV Gaussian mix-
ture optimization is a structure optimization algorithm, these
methods can be combined. Large vocabulary speech recog-
nition experiments are performed on oral presentations. It is
shown that both CV-EM and CV Gaussian mixture optimiza-
tion give lower word error rates than the conventional EM,
and their combination is effective to further reduce the word
error rate.

Index Terms— HMM, Gaussian mixture, cross-validation,
parameter estimation, structure optimization

1. INTRODUCTION

In order to obtain high recognition performance, precise mod-
eling of speech sounds is important. In general, a probabilis-
tic model can express a more complex distribution when it
has a larger number of parameters. Thus, it is necessary for
acoustic models used for large vocabulary continuous speech
recognition (LVCSR) to have many parameters. On the other
hand, the model parameters need to be estimated before they
are used in speech recognition. When many parameters are
estimated from a limited amount of data, the estimation in-
volves errors and the error degrades the model performance.
In other words, the model over-fits to the given training data
and loses the ability to generalize. Basically, the error be-
comes larger when the amount of data is small relative to the
number of model parameters. However, the amount of the
estimation error also depends on the training algorithm. To
improve speech recognition performance, it is important to
develop a training algorithm that is able to accurately esti-
mate large models from a limited amount of data as well as
optimizing the model size.

Acoustic models for LVCSR are usually implemented as
Gaussian mixture HMMs. A general recipe of training Gaus-
sian mixture HMMs is to start with a single Gaussian HMM

and then repeat the expectation maximization (EM) algorithm
along with the mixture splittings. The problems of this proce-
dure are that EM training is susceptible to over-training and
there is no mechanism to find the best mixture size. Moreover,
the model training by the EM algorithm can be even instable.
For example, when training a two-mixture Gaussian distribu-
tion, the algorithm sometimes produces a mixture distribution
in which one of the Gaussians covers only a few data points
with very small variance and the other Gaussian spans the rest
of the data points. Obviously, such a model is not desirable in
terms of generality.

These problems originated from using training set likeli-
hood as an objective function for the parameter estimation.
Because the likelihood is evaluated by a model whose pa-
rameters are estimated on the same data, it is positively bi-
ased. The bias becomes especially large when the amount of
training data is small relative to the number of model param-
eters. In order to address these problems by removing the
bias, we have proposed cross-validation EM (CV-EM) algo-
rithm [1] and cross-validation (CV) Gaussian mixture opti-
mization method [2] that replace the conventional training set
likelihood with CV likelihood. While CV-EM uses the CV
likelihood to estimate the expected sufficient statistics, CV
Gaussian mixture optimization uses the CV likelihood to se-
lect a pair of Gaussian components that should be merged.

In the previous studies, these CV training methods were
proposed and evaluated on the different tasks. Here, we eval-
uate these algorithms and their combination on the same large
vocabulary speech recognition task.

This paper is organized as follows. The CV based train-
ing algorithms are briefly reviewed in Section 2. Experimen-
tal conditions are shown in Section 3 and the results are pre-
sented in Section 4. Finally, a summary and future works are
given in Section 5.

2. CV TRAINING ALGORITHMS

In this section, the CV-EM algorithm and the CV Gaussian
mixture optimization method are briefly reviewed. One of the
novel points of these algorithms is the efficient evaluation of
the CV likelihood by utilizing sufficient statistics. The details
of these algorithms can be found in the original papers [1, 2].
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Fig. 1. CV-EM training. SS(i) is a sufficient statistics esti-
mated on the i-th data subset. M(i) denotes the i-th CV model
estimated without using the i-th data subset.

2.1. CV EM algorithm

CV-EM introduces CV into the framework of the EM algo-
rithm that repeats the expectation step (E-step) and the maxi-
mization step (M-step) alternatively. In the E-step of the EM
algorithm, expected sufficient statistics are estimated given a
current model, and in the M-step, the model parameters are
updated by the maximum likelihood criterion based on the
sufficient statistics. Because the E-step and the M-step use
the same training data, the EM iteration reinforces the bias for
particular training samples and is susceptible to over-fitting.
The key idea behind the CV-EM algorithm is to separate data
used in the E-step and the M-step. Since there is no overlap
in the data used for the E-step and the M-step, the potential
for over-fitting is reduced.

Figure 1 shows the training procedure of CV-EM. The
training data is partitioned into K subsets. In the E-step, suf-
ficient statistics are independently calculated for each subset.
Then, in the M-step, K CV models are estimated by accumu-
lating all but one sufficient statistics. Each CV model is used
in the next E-step to estimate the new sufficient statistics for
the data subset that has been excluded from the parameter es-
timation of that model. Thus, there is no overlap in data used
in the E-step and the M-step. The E-step and the M-step are
repeated as in conventional EM training and the final model
is obtained by merging all the sufficient statistics. When the
training data size is large compared to K , CV-EM has the
same order of computational cost as the EM algorithm.

Figure 2 compares test set likelihood of Gaussian mix-
ture models trained by the EM and the CV-EM algorithms.
The training and test data were sampled from 4-dimensional
8-mixture diagonal Gaussian distributions whose parameters
were randomly defined. Because of the over-fitting problem,
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Fig. 2. Test set likelihood of GMMs trained by EM and CV-
EM with varying training set sizes.

the test set likelihood does not monotonically increase for the
training iterations. It decreases for larger training iterations
especially when a small training set is used compared to the
model size. CV-EM is more robust against the over-fitting
problem than EM. Therefore, CV-EM can accurately estimate
larger model than conventional EM for a given amount of
training set.

2.2. CV mixture optimization algorithm

Given a model with large mixtures, a strategy to optimize
Gaussian mixture distribution is to select and merge a pair of
components based on an objective function step by step until
a termination criterion is satisfied. Figure 3 shows an exam-
ple of the merging process. The most popular choice for the
objective function is the training set likelihood. However, the
drawback with using the likelihood is that it is optimistically
biased and not reliable. Related to the bias, the likelihood al-
ways decreases for the component merging and it is difficult
to know when to stop the merging process.

CV mixture optimization algorithm uses CV likelihood
instead of the conventional training set likelihood. The CV
likelihood is less biased and is more reliable than the training
set likelihood. Therefore, the CV likelihood behaves as the
likelihood estimated on the new data. The optimal point for
the Gaussian merging iterations can be found as the maximum
point of the CV likelihood.

By utilizing pre-computed sufficient statistics, the CV like-
lihood can be efficiently evaluated for all combinations of the
components. Because the algorithm is based on the data-
driven method, it is expected to be more robust than the in-
formation theoretic model selection criteria such as minimum
description length (MDL) criterion, which often requires an
empirical tuning factor to compensate for errors in the theo-
retical assumptions [3].

Fig. 4 shows an example of the likelihood that is esti-
mated during the Gaussian merging optimization for a cer-
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Fig. 4. Gaussian component merging and GMM likelihood
evaluated on the training set. “Self-test” is the conventional
training set likelihood and “cross-validation”is the likelihood
by the CV method. The conventional likelihood takes a larger
value than the CV likelihood because of the positive bias.

tain HMM state with 256 mixtures. Conventional likelihood
takes a larger value than the CV likelihood because of the
optimistic bias. The increase of the CV likelihood indicates
that the model generality is improved by merging the com-
ponents and the decrease indicates that the model is becom-
ing too small. Therefore, the optimal number of mixtures is
around 210 in this case.

3. TRAINING PARADIGM AND EXPERIMENTAL
SETUPS

HMM acoustic models were trained using the CV training
algorithms independently or in combination. When the Gaus-
sian mixture optimization is performed, there are several pos-
sibilities of how to apply it. For example, it can be applied
only once using an HMM with large mixtures as an input

model. A problem with this strategy is that it is not obvious
how to choose the number of mixtures for the initial model.
The other strategy is to repeat the merging process along with
mixture splitting. In this way, the initial mixture size prob-
lem is avoided. In addition, a positive effect is expected in
finding better local optima as it kneads the mixtures by re-
peatedly absorbing unnecessary components and increasing
the survived Gaussians. In this work, the latter training proce-
dure is adopted. The HMMs were trained with the following
procedure:

1. Input 1-mixture tied-state HMM as an initial model.

2. Randomize and uniformly partition the training data.

3. Iterate EM or CV-EM for five times.

4. Optimize Gaussian mixtures by merging components.
Either the CV mixture optimization method or the MDL
criterion based method is used. Output HMM.

5. Split and double the number of the mixtures by du-
plicating the parameters with small deviation. Go to
step 2.

In addition to performing the mixture optimization using the
cross-validation based method, MDL criterion based optimiza-
tion was also investigated. The tuning factor for the MDL
criterion based method was set to 1.0 based on preliminary
experiments in which 256 mixture Gaussian HMMs were op-
timized with different tuning factors and evaluated for the test
set.

In the following, we count step 2 through step 5 as one
training iteration. The random partitioning was performed for
each training iteration. If the Gaussian merging in step 4 is
not performed, then the number of Gaussians in the HMM is
simply doubled for each training iteration. We refer to this
procedure with the EM training as a baseline.

The Gaussian mixture HMMs were tied-state model with
1000 states. They were trained from 30 hours of a subset
of the Corpus of Spontaneous Japanese (CSJ) [4]. The ut-
terances were from academic presentations. Feature vectors
had 39 elements comprising of 12 MFCC and log energy,
their delta, and delta delta. The HTK toolkit [5] was used
for the EM training. In order to support the operations on
sufficient statistics, a modified version of HTK was used for
the CV-EM. The language model was a trigram model trained
from 6.8M words of academic and extemporaneous presenta-
tions from the CSJ. Test set was the CSJ evaluation set that
consisted of 10 academic presentations given by male speak-
ers. Speech recognition was performed using the Julius de-
coder [6]. The number of the CV folds was 30 for both CV-
EM and CV Gaussian mixture optimization.
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Fig. 5. Number of training iterations and averaged num-
ber of mixtures per state. “(CV)EM” shows the number
of mixtures when the mixture optimization is not performed.
“EM+CVMIX” and “CVEM+CVMIX” are the results when
CV mixture optimization is combined with EM and CV-EM,
respectively. “EM+MDL” is the combination of EM and
MDL based mixture optimization.

4. EXPERIMENTAL RESULTS

Fig. 5 plots the averaged number of mixtures per state for the
training iteration. When the merging optimization was per-
formed, the number of mixtures first increased exponentially
and then gradually converged to a constant value. This is be-
cause the Gaussian merging hardly occurs when the model
is small. As the number of mixtures increased, the merging
process effectively started to work. After sufficient iterations,
the number of merged components became equal to the num-
ber of splits and a balance in the total number of mixtures was
reached. The Gaussian merging optimization gave larger mix-
ture size when it is combined with CV-EM than when com-
bined with EM. This is probably because CV-EM makes bet-
ter use of more parameters. The MDL criterion based mixture
optimization gave smaller model sizes than the CV based op-
timization.

Fig.6 shows word error rates by the models trained by the
EM and the CV-EM algorithms with and without the mixture
optimization. When EM was used without the mixture opti-
mization, the lowest word error rate of 27.4% was obtained
at the seventh iteration and then the performance began to de-
crease for the training iterations. This is because the sparse-
ness problem arises as the model size gets large. CV-EM al-
ways gave similar or lower word error rates than EM. Espe-
cially, it was much more robust than EM for the larger model
sizes. The lowest word error rate of 27.0% was obtained at
eighth iteration.

When EM was combined with the CV mixture optimiza-
tion, the model size was automatically controlled and the sparse-
ness problem was mostly avoided. Moreover, as the iterations
proceeded, it gave lower word error rates than EM by finding
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Fig. 6. Number of training iterations and test set word er-
ror rate. “EM” and “CVEM” are the results of EM and
CV-EM without the mixture optimization. “EM+CVMIX”
is the combination of the CV mixture optimization with
EM, and “CVEM+CVMIX” is the combination with CVEM.
“EM+MDL” is the combination of MDL based mixture opti-
mization with EM.

better local optima.

The combination of EM and MDL based mixture opti-
mization gave lower word error rates than EM, but higher than
the combination of EM and the CV based mixture optimiza-
tion. The lowest word error rate was 26.9%.

Among the training strategies, the lowest word error rate
of 26.5% was obtained by the combination of CV-EM and
the CV mixture optimization with 15 training iterations. The
relative reduction of the error rate was 3.3% compared to the
lowest error rate of the EM training.

5. SUMMARY AND FUTUREWORKS

In this study, we have evaluated the CV-EM algorithm, the CV
based mixture optimization method, and their combination. It
has been confirmed that both CV-EM and CV based mixture
optimization method gave lower word error rates than the con-
ventional EM. Moreover, the recognition performance was
further improved by combining the two CV training schemes.
These results indicate that the CV likelihood based training
methods are better able to train precise models than conven-
tional training algorithms from a limited amount of training
data without suffering the over-fitting problem.

Future works include the combination with the decision
tree clustering method based on the CV likelihood [7]. By
combining these algorithms, all the likelihoods used in the ba-
sic HMM training procedure are substituted by the CV like-
lihood. This will make the training process more robust to
over-fitting and higher recognition performance is expected.
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