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Abstract
Self-supervised learning (SSL)-based pretrained models have
significantly improved automatic speech recognition (ASR)
performance. As the feature extraction (FE) module has also
been well-trained with a large amount of training data, freezing
the FE during finetuning for downstream ASR tasks is common.
When there is a severe mismatch between the simulated noisy
data for pretraining and real noisy data, however, finetuning the
FE with the real noisy data should be done without losing the
effective information of the pretrained FE. In this paper, we pro-
pose a dual-path adaptation of the FE to address this problem.
It combines the frozen pretrained FE path and the finetuned-
adapted FE path with convolutional fusion layers. Moreover,
adapters are inserted into the Transformer encoder. The ex-
perimental results using the CHiME–4 dataset show that using
adapters for the FE or the Transformer encoder is effective, but
achieving synergy of these two is challenging. Finetuning of
the FE combined with adapters in the encoder realizes effec-
tive model adaptation. Moreover, the proposed method utilizes
the complementarity between the pretrained and the finetuned
FE paths, achieving significant improvements even with noise-
robust WavLM models.
Index Terms: Automatic speech recognition, noise robustness,
self-supervised learning, adapter

1. Introduction
Self-supervised learning (SSL) [1, 2, 3, 4, 5] is a machine learn-
ing approach in which a model discerns patterns from unlabeled
data by autonomously creating supervisory signals or labels.
Compared to the conventional supervised learning that relies
on human-annotated data for training [6], SSL extracts features
and encoded representations with massive unlabeled data for
subsequent tasks [7, 8]. SSL greatly improves the performance
of automatic speech recognition (ASR) [4, 9, 10, 11]. Typical
SSL models for ASR [4, 9, 12] contain a feature extraction (FE)
module and a Transformer encoder [6]. The unsupervised FE
module is trained well and universally with a large amount of
data. Thus, it is a common practice to freeze the parameters of
the FE [13, 14] and finetune the following Transformer layers
only.

Although this finetuing method benefits many speech-
oriented tasks [7, 8, 15, 16], two mismatches emerge in the
FE when targeting noise-robust ASR. The primary mismatch
arises as the pretraining data of the FE is primarily based on
clean and simulated noisy speech. In contrast, the main ap-
plication needs to tackle real noisy speech [4, 9]. The second
mismatch is caused by the divergent data distribution between
clean and noisy speech [9]. While some pretraining datasets
incorporate noisy speech, noise in unsupervised training may

lead to erroneous cluster assignments during the quantization
process [9, 12]. Finetuning the FE parameters can mitigate the
mismatch for noise-robust ASR, but the pretrained information
of the FE will be diminished.

Furthermore, SSL-based models typically consist of a huge
number of parameters [4, 9, 10, 11]. Consequently, an efficient
method to adapt the model to new scenarios is critical. Insert-
ing adapters [17, 18, 19] within the model presents a simple but
effective method. Inserting an adapter in the encoder layer or af-
ter the layer can achieve good effects at the encoding level [17].
In this process, the parameters of the Transformer encoder are
frozen, and only the adapters are finetuned [17, 20]. Addressing
the mismatch mentioned above at the feature level is also nec-
essary for noise-robust ASR, in addition to encoder-level adap-
tation. However, there are limited studies on FE adaptation for
SSL-based pre-trained models.

In this paper, we first investigate the adaptation of the FE
module based on finetuning and adapters. Based on the obser-
vation, we propose a dual-path adaptation of FE for improving
the noise-robust ASR. It consiss of a frozen pretrained FE path
and a finetuned-adapted FE path. The frozen pretrained FE path
keeps the information learned from massive pretraining data,
while the finetuned FE path deals with real noise. These two
paths are fused with convolutional layers in a masking way sim-
ilar to speech enhancement [21, 22, 23, 24]. The fusion of the
two paths aims to utilize the complementarity between them.
The proposed method has a synergy with adapters in the en-
coder.

The rest of this paper is organized as follows. Section 2 de-
scribes related works. Section 3 describes our proposed method.
Section 4 gives experimental settings and results. Section 5
gives the conclusion and future work.

2. Preliminaries
2.1. HuBERT and WavLM

HuBERT [9] is a self-supervised model designed for ASR. Its
training can be divided into two stages: pretraining and fine-
tuning. During the pretraining, some segments of the features
extracted by the FE module are masked. Then, the Transformer
is trained to infer the quantized code of the masked (and un-
masked) segments using the masked segments. WavLM [12]
extends HuBERT by using simulated noise speech in the pre-
training process to learn noise robustness capabilities. Cross-
entropy loss is defined during the pretraining stage. Once pre-
trained, the model can be finetuned on a labelled ASR dataset
with the connectionist temporal classification (CTC) loss [25].
The FE module is shown in Fig. 1–(a). It contains several 1-
D convolutional layers, which extract the feature embedding x′

from the time-domain waveform x.
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Figure 1: Neural network structure of (a) baseline feature ex-
traction module; (b) proposed dual-path adaptation of feature
extraction module (Dual-FE-Conv).

Figure 2: Flowchart of (a) adapter-based adaptation of the
Transformer encoder; (b) adapter-based adaptation of both the
FE module and the Transformer encoder.

2.2. Adapter

An adapter was proposed [18] to efficiently adapt a large pre-
trained model in natural language processing tasks. The adapter
structure depends on task requirements and the model architec-
ture [26]. A simple but highly effective adapter contains two
dense layers of a bottleneck shape called LoRA [17]. In this
work, the adapter’s input is the output of the Transformer layer
in the pretrained model. The adaptation process is depicted as
follows:

e′ = e+ adapter(e) (1)

Here, e represents the original encoder layer output, and e′ rep-
resents the adapted feature. As shown in Fig. 2–(a), an adapter
is inserted after each Transformer layer. As shown in Fig. 2–(b),
it can also be inserted after the FE module.

3. Dual-path Adaptation of Feature
Extraction

A pretrained FE module has already learned good feature rep-
resentations. Therefore, the FE module is often frozen during
finetuning to maintain the information learned from massive
data. However, a mismatch can exist between the simulated
speech for pretraining and the real noisy speech for evaluation.

In this paper, we propose a dual-path adaptation of the FE
module for noise-robust ASR, which is depicted in Fig. 1–(b).
The proposed FE module contains two paths: the pretrained FE
path keeps the information learned from the massive pretrain-
ing data; the adapted FE path is finetuned with the target noisy
data, which is more suitable for noisy ASR but may lose the
information learned in the pretraining. These two paths can be
combined by simply adding:

xfused = xfrozen + xfinetuned (2)

where xfrozen, xfinetuned, and xfused denote the features de-
rived from the frozen FE module, those from the finetuned FE
module, and the fused features, respectively. This adding fusion
method is denoted as Dual-FE-Add. We also propose to use ad-
ditional 1-D convolutional layers to fuse information from the
two paths layer by layer:

xfused = Conv1d(Concat(xfrozen, xfinetuned)) (3)

Conv1d denotes the convolutional 1-D layer, and Concat de-
notes the concatenation. In this paper, the kernel size of the
Conv1d layers is 1, and 1 × 1 − conv block is also known as
pointwise convolution. Thus, the Conv1d layer, which is sim-
ilar to the masking way in the speech enhancement [27], fuses
effective information from the dual-path features. This convo-
lutional fusion method is denoted as Dual-FE-Conv.

We also introduce pretraining for dual-path FE. Clean
speech is input to the frozen FE module to obtain the target
x′
clean. Then, it is compared against the adapted noisy feature

x′
noisy derived from the proposed method to calculate the mean

squared error (MSE) loss as shown in Fig. 1:

L = ||x′
clean − x′

noisy||2 (4)

Furthermore, another adapter is incorporated into the Trans-
former encoder. It is added after each Transformer encoder
layer, shown in Fig. 2–(a). As the number of the adapter pa-
rameters is much smaller than that of the Transformer encoder,
only finetuning the adapter can efficiently adapt the model to
different noise scenarios.

4. Experimental Evaluations
4.1. Dataset

The experiments utilized the CHiME-4 dataset [28]. It includes
four different noise conditions: bus (BUS), cafe (CAF), pedes-
trian area (PED), and street junction (STR). The audio in the
dataset was digitized at a sampling rate of 16 kHz. All simu-
lated and real noisy data from channels 1 to 6 were utilized dur-
ing the model training phase. The Channel 5 noisy data from
the development and evaluation sets were used for testing.

4.2. Experimental settings for FE module adaptation

For all SSL pretrained models, the FE module contained the
same parameters of 7 Conv 1d layers. Except for the input of
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Table 1: Evaluation with HuBERT finetuned with LibriSpeech–960: “FE” represents the feature extraction module; “Enc” representes
the Transformer encoder; “FT” means finetuning all parameters; “Ada” means the use of adapters.

Exp. FE Enc Real Development Sets Real Evaluation Sets
FT Ada. Ada. BUS STR PED CAF AVE BUS STR PED CAF AVE

1 25.1 23.9 15.5 21.9 21.6 42.5 25.3 28.7 33.2 32.4
2 ✓ 18.4 17.6 10.6 15.4 15.5 30.4 17.7 19.9 23.6 22.9
3 ✓ 21.1 18.5 11.8 16.8 17.1 35.3 19.9 21.5 25.5 25.5
4 ✓ ✓ 19.2 18.0 10.2 15.1 15.6 31.4 18.5 19.4 23.3 23.2
5

Clean Trained

✓ 24.4 23.5 14.7 21.3 21.0 42.2 24.9 29.1 33.9 32.5
6

HuBERT

✓ ✓ 14.7 11.5 8.5 10.8 11.4 22.5 11.6 13.8 15.8 15.9

7 Dual-FE-Add ✓ ✓ 12.3 9.1 6.8 8.5 9.2⋆ 19.4 9.3 11.1 13.0 13.2⋆
8 Dual-FE-Conv ✓ 14.9 11.8 8.7 11.0 11.6 23.1 11.0 13.7 17.0 16.2
9 Dual-FE-Conv ✓ ✓ 11.9 8.1 6.6 8.3 8.7⋆ 17.7 8.6 11.0 12.4 12.5⋆

(⋆: p-value < 0.01 against Exp.–6)

the first Conv 1d layer, the number of the input and output chan-
nels was 512. Moreover, the kernel size and stride were (10, 5),
(3, 2), (3, 2), (3, 2), (3, 2), (2, 2), (2, 2), respectively. The frozen
and finetuned FE modules adopted this setting. The number
of the input and output channels for the fusion Conv 1d layers
were 1024 and 512, respectively. Their kernel size and stride
were all 1. During training, SpecAug [29] was applied to the
input features for the adapted FE only. We introduced pretrain-
ing for the dual-path FE based on the MSE loss in Eqn. (4).
The training data was taken from the CHiME–4 dataset. The
training epoch was 2.

4.3. Experimental settings for ASR back-ends

We used various ASR back-ends to evaluate the effectiveness
of the proposed method. HuBERT models were employed by
following the same configuration as fairseq toolkit1.
• HuBERT–extraLarge trained with clean speech: We used

the HuBERT model trained with Librispeech-960 as the base-
line2 in order to make a mismatched scenario between train-
ing and testing (Exp.–1). It contained 48 Transformer lay-
ers. In each Transformer layer, the embedding dimension
was 1280, the inner FFN dimension was 5120, the number
of attention heads was 16, and the projection dimension was
1024.

• HuBERT–Large trained with noisy speech: We evaluated
with the ASR back-end finetuned with noisy data. We fine-
tuned the pretrained checkpoint of HuBERT Large3 with Lib-
rispeech (960 hours) [30] and the MUSAN noise dataset [31]
(Exp.–10). The noisy speech was made with randomly se-
lected signal-to-noise ratios (SNRs) within the range of 0 to
20 dB. The FE is based on HuBERT Large. It contained
24 Transformer layers with 1024 embedding dimensions and
4096 inner FFN dimensions, and the number of attention
heads was 16.

• WavLM–Large trained with noisy speech: We also ex-
plore the performance of the proposed method with a noise-
robust FE. We finetuned the pretrained checkpoint of WavLM

1https://github.com/facebookresearch/fairseq/
blob/main/examples/hubert/config/finetune/
base_10h.yaml

2https://dl.fbaipublicfiles.com/hubert/hubert_
xtralarge_ll60k_finetune_ls960.pt

3https://huggingface.co/facebook/
hubert-large-ll60k

Large4 with Librispeech (960 hours) [30] and the MUSAN
noise dataset [31] (Exp.–17). It contained 24 Transformer
encoder layers, 1024-dimensional hidden states, and 12 at-
tention heads. Furthermore, it adopted the gated relative po-
sition bias in the self-attention.

The input and output dimenssons for adapters were 1280,
and the dimension of the middle bottleneck layer was 16. It
should be emphasized that inserting adapters in the Transformer
encoder layer does not require parameter pretraining.

4.4. Comparison of adapter-based adaptation

Table 1 (upper rows) shows the performance of different ASR
systems for the development and evaluation sets, respectively.
By comparing Exp.–1 and Exp.–2, adding an adapter into the
Transformer layer significantly improved the performance of
ASR. This shows that adapter-based encoder-level adaptation
is very effective. By comparing Exp.–1 and Exp.–3, adding
an adapter in the FE module also significantly improved the
performance of ASR. However, Exp.–4 shows that inserting
an adapter into both the FE module and Transformer encoder
does not improve ASR performance from Exp.–2. The result
suggests that combining these two-module adaptations with the
adapters presents a challenge. The Transformer encoder adap-
tation more readily influences the overall performance of the
model.

Then, we tried to finetune only the FE module instead of
using adapters. According to the results of Exp.–5, the perfor-
mance is not improved in the development sets and degraded
in the evaluation sets. This result shows that finetuning the
FE module does not achieve effective noise reduction or adap-
tation. On the other hand, as shown in Exp.–6, combining
the Transformer adapter with FE finetuning significantly im-
proved the performance. Compared with Exp.–2, which only
inserts an adapter to the encoder, it showed 29% and 31% rel-
ative improvements in the development and evaluation sets, re-
spectively. It also significantly outperforms Exp.–5. The result
shows that FE finetuning is effective only when combined with
the encoder adaptation, which addresses the mismatch.

The similar trend is observed with the noise speech-trained
ASR systems, which were shown in Table 2 and 3.

4https://huggingface.co/microsoft/wavlm-large/
blob/main/pytorch_model.bin
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Table 2: Evaluation with HuBERT finetuned with LibriSpeech–960 and MUSAN noises.

Exp. FE Enc Real Development Sets Real Evaluation Sets
FT Ada. Ada. BUS STR PED CAF AVE BUS STR PED CAF AVE

10 19.8 16.5 13.8 14.9 16.3 26.3 17.2 17.8 20.1 20.3
11 ✓ 15.1 12.8 9.5 11.5 12.3 21.8 13.4 15.4 16.0 16.6
12 Noise Trained

✓ 16.9 13.8 11.6 13.3 13.9 22.8 13.8 16.1 16.9 17.4
13 HuBERT

✓ ✓ 14.0 11.8 9.4 11.2 11.6 20.0 11.8 14.3 14.9 15.3

14 Dual-FE-Add ✓ ✓ 12.4 9.6 8.1 9.4 9.9⋆ 18.4 10.2 13.6 14.3 14.1⋆
15 Dual-FE-Conv ✓ 15.9 13.6 11.2 12.8 13.4 21.5 13.5 15.7 16.9 16.9
16 Dual-FE-Conv ✓ ✓ 11.9 9.8 8.9 8.2 9.7⋆ 17.8 10.1 13.7 13.0 13.7⋆

(⋆: p-value < 0.01 against Exp.–13)

Table 3: Evaluation with WavLM finetuned with LibriSpeech–960 and MUSAN noises.

Exp. FE Enc Real Development Sets Real Evaluation Sets
FT Ada. Ada. BUS STR PED CAF AVE BUS STR PED CAF AVE

17 11.0 9.8 7.9 9.1 9.5 14.1 9.0 10.1 10.8 11.0
18 ✓ 9.5 7.8 6.9 7.9 8.1 12.2 8.1 9.5 9.4 9.8
19 Noise Trained

✓ 10.9 9.0 7.7 9.0 9.1 13.2 8.9 9.7 10.6 10.6
20 WavLM

✓ ✓ 9.1 7.9 6.9 8.0 8.0 11.6 8.1 8.8 9.4 9.5

21 Dual-FE-Add ✓ ✓ 8.2 7.0 5.9 6.2 6.8⋆ 10.5 6.8 7.9 8.3 8.4⋆
22 Dual-FE-Conv ✓ 11.2 9.9 8.1 9.2 9.6 13.1 9.0 9.9 10.8 10.7
23 Dual-FE-Conv ✓ ✓ 8.7 7.3 6.5 7.2 7.4⋄ 11.7 7.2 8.6 8.6 9.0⋄

(⋆: p-value < 0.01 against Exp.–20; ⋄: p-value < 0.05 against Exp.–20)

4.5. Effect of dual-path FE for clean speech-trained Hu-
BERT

Table 1 (lower rows) shows results of the proposed dual-path
adaptation of the FE for clean speech-trained HuBERT. Sim-
ple adding (Exp.–7) provides performance improvement com-
pared with Exp.–6, but a much larger improvement is gained
when using the convolutional layers to fuse the two features
layer by layer. Compared with Exp.–6, Exp.–9 showed 24% and
21% relative improvements in real data of the development and
evaluation sets, respectively. These results confirm information
complementarity between the two features. This complemen-
tarity can be effectively utilized with more complex networks
like Conv1d layers for the clean model. The performance dif-
ference between Exp.–9 and Exp.–7 is statistically significant
(p-value < 0.05).

The result without adapters in the encoder (Exp.–8) shows
an improvement from the same setting (Exp.–5), but it is much
degraded from Exp.–9, showing the importance of the adapter.

We also compared the proposed system with directly fine-
tuning the HuBERT–extraLarge with CHiME–4 dataset. The
average WER of the real evaluation sets was 13.5, which is
worse than the proposed methods (Exp.–9).

4.6. Evaluations with noisy speech-trained HuBERT

Table 2 shows the results with noisy speech-trained HuBERT.
The FE module adaptation was also effective in this model. The
improvements by Exp.–14 and Exp.–16 from Exp.–13 are sig-
nificant (p-value < 0.01) for development and evaluation sets.
However, the improvement without adapters (from Exp.–12 and
Exp.–15) is not so large. The Dual-FE-Conv (Exp.–16) was
better than Dual-FE-Add (Exp.–14), but the difference between

them is not significant.

4.7. Evaluations with noisy speech-trained WavLM

Table 3 shows the results with WavLM. The proposed method
was also effective for this model. The improvement from Exp.–
20 to Exp.–23 is statistically significant (p-value < 0.05) for the
development and evaluation sets. In this model, however, the
performance of Dual-FE-Add (Exp.–21) was better than Dual-
FE-Conv (Exp.–23) (p-value < 0.05). The synergy of the pro-
posed dual-path FE adaptation with adapters within the encoder
is confirmed, but the complex fusion mechanism is not needed
in the noise-robust model.

5. Conclusions
In this paper, we have proposed a dual-path adaptation of the
feature extraction (FE) module to address the data mismatch
between pretraining and evaluation. The proposed FE module
combines the frozen pretrained and finetuned adapted FE paths.
The features extracted by these two paths contain information
complementarity. Furthermore, the 1-D convolutional layers are
adopted to fuse the information between these two paths layer
by layer. Moreover, we used adapters to adapt the Transformer
encoder. The experimental results using the CHiME–4 dataset
show that the combination of finetuning FE with adapters in
the encoder provides synergy, and the proposed method signifi-
cantly improved the ASR performance.

6. Acknowledge
This work was supported by JST Moonshot R&D Grant Num-
ber JPMJMS2011.

2853



7. References
[1] A. van den Oord, Y. Li, and O. Vinyals, “Representation

learning with contrastive predictive coding,” arXiv preprint
arXiv:1807.03748, 2019.

[2] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in Proc.
CVPR, 2020.

[3] J. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
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