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ABSTRACT

Sound event localization and detection (SELD) systems esti-
mate direction-of-arrival (DOA) and temporal activation for sets
of target classes. Neural network (NN)-based SELD systems have
performed well in various sets of target classes, but they only output
the DOA and temporal activation of preset classes trained before
inference. To customize target classes after training, we tackle
zero- and few-shot SELD tasks, in which we set new classes with
a text sample or a few audio samples. While zero-shot sound
classification tasks are achievable by embedding from contrastive
language-audio pretraining (CLAP), zero-shot SELD tasks require
assigning an activity and a DOA to each embedding, especially
in overlapping cases. To tackle the assignment problem in over-
lapping cases, we propose an embed-ACCDOA model, which is
trained to output track-wise CLAP embedding and corresponding
activity-coupled Cartesian direction-of-arrival (ACCDOA). In our
experimental evaluations on zero- and few-shot SELD tasks, the
embed-ACCDOA model showed better location-dependent scores
than a straightforward combination of the CLAP audio encoder and
a DOA estimation model. Moreover, the proposed combination of
the embed-ACCDOA model and CLAP audio encoder with zero-
or few-shot samples performed comparably to an official baseline
system trained with complete train data in an evaluation dataset.

Index Terms— Sound event localization and detection (SELD),
contrastive language-audio pretraining (CLAP)

1. INTRODUCTION

Given multichannel audio signals, a sound event localization and
detection (SELD) system simultaneously estimates the direction-of-
arrival (DOA) and temporal activation of target classes. SELD plays
an essential role in many applications, such as surveillance [1], bio-
diversity monitoring [2], and smart devices [3, 4]. Each application
has its own set of target sound event classes. For example, a surveil-
lance SELD system is required to detect and localize screams, gun-
shots, or glass breaking, whereas a smart home SELD system needs
to detect and localize speech, footsteps, or dog barking.

Recent neural network (NN)-based SELD systems usually set
the target classes around ten sound events [5–14]. After training with
annotated multichannel audio data, the NN-based systems detect and
localize target sound events. There are two main approaches to as-
sociate a detection result with its DOA: class-wise and track-wise.
An example of the class-wise approach is SELDnet [7], which out-
puts an activity and a DOA of each target class. An activity-coupled
Cartesian DOA (ACCDOA) vector assigns the activity to the length
of a Cartesian DOA vector [8], and the ACCDOA vector enables us
to unify the activity and DOA branches into an ACCDOA branch.
Event independent network v2 (EINV2) is a track-wise method, in
which each track estimates an event’s class and the corresponding
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Fig. 1. Overview of zero- and few-shot SELD system.

location [9]. These SELD systems have shown a reasonable perfor-
mance in both simulated and real environments [5–14].

However, they only output the temporal activation and DOA of
preset classes trained before inference. This is problematic because
users generally prefer their own set of target sound event classes. To
customize target classes after training, we tackle zero- and few-shot
SELD tasks, in which we set new classes with zero- and few-shot
samples (Fig. 1). In this context, a zero-shot sample means a text
sample of sound events, e.g., “glass breaking,” and few-shot samples
mean a few audio samples of sound events.

Contrastive language-audio pretraining (CLAP) allows for zero-
shot tasks [15–17], similar to contrastive language-image pretrain-
ing (CLIP) [18, 19]. CLAP learns to connect language and audio
using two encoders and contrastive learning to bring audio and text
descriptions into a joint multi-modal space. Zero-shot classification
is solved by computing the cosine similarity between the CLAP em-
beddings of an audio query and text support samples [15–17]. When
we have a few audio samples of target classes, we can tackle few-
shot audio tasks. In addition to the few-shot classification task [20],
several works have tackled the few-shot sound event detection (SED)
task [21, 22]. A few-shot SED system takes an audio query se-
quence and needs to estimate sections without target classes, i.e.,
background noise sections [22]. While the CLAP embeddings allow
us to tackle zero- and few-shot classification and SED tasks, zero-
and few-shot SELD tasks have other requirements: specifically, they
must output an event’s embedding and its corresponding DOA in
both single source and overlapping cases, as shown in Fig. 2.

In this paper, to solve the assignment problem in overlapping
cases, we propose an embed-ACCDOA model, which is trained to
output track-wise CLAP embedding and the corresponding ACC-
DOA vector. The embed-ACCDOA model uses a similar network
architecture to the track-wise SELD method EINV2 [9]. Before in-
ference, we obtain support embeddings from zero- or few-shot sam-
ples of target classes. In the inference, if activity from the estimated
ACCDOA vector is larger than a threshold, the system outputs DOA
from the ACCDOA vector and a class whose support embedding is
the nearest to the estimated embedding. We also propose combining
the embed-ACCDOA model and the CLAP audio encoder to utilize
a CLAP embedding itself in single-source cases. To investigate the
proposed methods in zero- and few-shot SELD tasks, we first train
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Fig. 2. Zero- and few-shot sound classification and SELD tasks.

the embed-ACCDOA model with a synthetic dataset, and then evalu-
ate the system with two datasets: Sony-TAU Realistic Spatial Sound-
scapes 2023 (STARSS23) [6, 23] and TAU-NIGENS Spatial Sound
Events 2021 (TNSSE21) [5]. We prepare a straightforward combi-
nation of the CLAP audio encoder and a DOA estimation (DOAE)
model for comparison. We also compare with the official baseline
SELD systems trained with full training datasets for reference.

2. ZERO- AND FEW-SHOT SELD TASKS

We first explain zero-shot sound classification tasks using language-
audio models such as CLAP [15–17]. The left side of Fig. 2 shows
a zero-shot sound classification task. We define a zero-shot support
sample of class c as a text data Xt

c, e.g., “class-name.” Let an
audio spectrogram Xq′ ∈ RF ′×T ′

be a query sample. F ′ and T ′ in-
dicate the numbers of frequency bins and time frames, respectively.
The D-dimensional embedding of text support Et

c ∈ RD and one
of audio query Eq′ ∈ RD are respectively obtained by a CLAP text
encoder FCLAPtext and a CLAP audio encoder FCLAPaudio:

Et
c = FCLAPtext(X

t
c), (1)

Eq′ = FCLAPaudio(X
q′). (2)

For C classes, we construct C prompt texts Xt = {Xt
c}c=1,...,C .

For a given audio Xq′ , we determine the best match Xt
c among Xt

by the cosine similarity function over their embeddings Eq′ and Et
c.

We keep the same support embeddings Et
c for the zero-shot

SELD tasks. Unlike zero-shot sound classification tasks, zero-shot
SELD tasks need to output per time frame, to consider overlapping
sound events, and to associate embeddings and DOAs. The right side
of Fig. 2 depicts a zero-shot SELD task, given a multichannel audio
query sequence Xq ∈ RM×F×T , where M , F , and T indicate the
numbers of feature channels, frequency bins, and time frames, re-
spectively. To solve the requirements for time frames and overlap-
ping sound events, the audio query embeddings should have dimen-
sions of time and track, i.e., Eq ∈ RD×N×T , where N indicates the
numbers of output tracks. Also, audio query embeddings Eq need
to be associated with Cartesian DOA vectors Rq ∈ R3×N×T . For
each audio query embedding Eq

nt, we determine the best match Et
c

among Et = {Et
c}c=1,...,C by the cosine similarity function.

When we use a K-shot audio support set Xa
c = {Xa

ck ∈
RF ′×T ′

}k=1,...,K instead of a zero-shot text sample for a class c, we
replace the text embedding Et

c with an audio embedding Ea
c ∈ RD:

Ea
c =

1

K

∑
Xa

ck
∈Xa

c

FCLAPaudio(X
a
ck), (3)

where we use an average of the embeddings called a prototype [24].
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Fig. 3. Overview of a 2-track embed-ACCDOA model.

3. METHOD

3.1. Embed-ACCDOA model

To achieve zero-shot SELD tasks, a CLAP model can output em-
beddings in single source cases. However, CLAP models are not
designed to output each embedding of sound events in overlapping
cases. To obtain embeddings and the corresponding DOAs in over-
lapping cases, we propose an embed-ACCDOA model, which out-
puts an embedding and an ACCDOA vector in each track. The model
is trained to output an oracle CLAP embedding and its correspond-
ing ACCDOA vector in a track, given a multichannel spectrogram
X ∈ RM×F×T . The embed-ACCDOA format is formulated by em-
beddings, E ∈ RD×N×T , and ACCDOA vectors, P ∈ R3×N×T .

Each ACCDOA vector of a track is represented by three nodes
corresponding to the sound event location in the x, y, and z axes [8].
Let a ∈ RN×T be activities, whose reference value is a∗

nt ∈ {0, 1},
i.e., it is 1 when the event is active and 0 when inactive. Also, let
R ∈ R3×N×T be Cartesian DOAs, where the length of each Carte-
sian DOA is 1, i.e., ||Rnt|| = 1 when a track n is active. || · || is the
L2 norm. An ACCDOA vector is formulated as follows [8]:

P nt = antRnt. (4)

An activity and a Cartesian DOA vector are obtained from the AC-
CDOA vector [8]:

ant = ||P nt||, (5)

Rnt =
P nt

||P nt||
. (6)

In training, we use synthetic mixture with J clean directional
sound events {Xj ∈ RM×F×T }j=1,...,J :

X =
J∑
j

Xj +N , (7)

where N ∈ RM×F×T is ambient noise. To obtain an oracle embed-
ding E∗

jt, we use CLAP audio embeddings from clean events:

E∗
jt = FCLAPaudio(X

(1)
j ), (8)

where we utilize the entire length event of the first channel X(1)
j

since one frame of the spectrogram is too short to obtain an accurate
CLAP embedding. If the number of events is less than the number
of tracks, we set a zero vector as an oracle embedding.

To output embeddings and ACCDOA vectors in a track-wise
manner, the embed-ACCDOA model uses a similar network archi-
tecture to EINV2 [9], a well-known track-wise model. Our archi-
tecture has two branches: an embedding branch and an ACCDOA
branch. Each branch consists of convolution blocks, multi-head self-
attention (MHSA) blocks, and fully connected layers. Also, the con-
volution blocks use cross-stitch units [9, 25] to share parameters be-
tween the two branches. The architecture is depicted in Fig. 3.
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Similarly to other track-wise approaches, the embed-ACCDOA
model also suffers from the track permutation problem. To over-
come this issue, we adopt permutation-invariant training (PIT) for
the training process. The frame-level PIT [9] is used in this study.
Assume all possible permutations constitute a permutation set Perm.
α ∈ Perm(t) is one possible frame-level permutation at frame t. A
PIT loss for the embed-ACCDOA format can be written as follows:

LPIT =
1

T

T∑
t

min
α∈Perm(t)

lEA
α,t , (9)

lEA
α,t =

1

N

N∑
n

βEl
E
α,nt + βAl

A
α,nt, (10)

lEα,nt = CosineSimilarity(E∗
α,nt, Ênt), (11)

lAα,nt = MSE(P ∗
α,nt, P̂ nt), (12)

where E∗
α,nt and P ∗

α,nt are respectively an oracle embedding and
ACCDOA vector of a permutation α, and Ênt and P̂ nt are respec-
tively a predicted embedding and ACCDOA vector, at track n and
frame t. βE and βA are loss coefficients for embedding and ACC-
DOA, respectively. We use cosine similarity as a loss function for
embeddings, as it is widely used in zero-shot tasks. We use mean
squared error (MSE) as a loss function for the ACCDOA vectors [8].

In inference, we prepare each support embedding Es
c ∈

{Et
c,E

a
c} as described in Section 2. Given a multichannel query

sequence Xq , the embed-ACCDOA model estimates embedding Ê

and the corresponding ACCDOA P̂ . Class at track n and frame t,
ĉnt, is obtained from the embedding as follows:

ĉnt = argmax
c∈C

CosineSimilarity(Ênt,E
s
c). (13)

To obtain the final outputs of class and DOA at frame t, (ĉt, R̂t)
l,

where l ∈ {0, 1, ..., n}, we use two thresholds: σa for the track with
the highest activity, and σb(> σa) for other tracks.

Thresholdnt =

{
σa if n = argmaxn′∈N an′t,

σb if n ̸= argmaxn′∈N an′t.
(14)

Since single source cases are easier to estimate than overlapping
cases, a lower σa can increase true positives while a higher σb can
prevent false positives.

We also incorporate a support embedding for background noise
Es

noise to decrease false positives. If the support embedding for
noise is more similar to an estimated embedding than the target
classes, we set no event at the frame. In a zero-shot setting, we
obtain the support embedding with the text data of “silent.” We take
a few audio samples without target classes in a few-shot setting.

3.2. Combination of CLAP and Embed-ACCDOA

To improve the zero-shot SELD performance in single source cases,
we combine the embed-ACCDOA model and the CLAP audio en-
coder in inference. When there is only one source after the thresh-
olding, we calculate the cosine similarity between the support em-
beddings and the embedding from the CLAP encoder Êt,CLAP in-
stead of the embedding predicted by embed-ACCDOA. We finally
use the class ĉt,CLAP, which is calculated as

Êt,CLAP = FCLAPaudio(X
q,(1)), (15)

ĉt,CLAP = argmax
c∈C

CosineSimilarity(Êt,CLAP,E
s
c), (16)

where we utilize the entire length signal of the first channel Xq,(1),
following the training phase.

4. EXPERIMENTAL EVALUATIONS

We evaluate the embed-ACCDOA methods in zero- and few-shot
SELD tasks using multichannel audio data with the first-order Am-
bisonics (FOA) format. We compare the proposed methods with a
straightforward combination of a CLAP audio encoder and a DOAE
model. The proposed methods are also compared with the official
baseline SELD systems trained with full training datasets.

4.1. Task setups

To set up the zero- and few-shot SELD tasks, we prepare train-
ing data using a data generator1 from the TAU Spatial Room Im-
pulse Response Database (TAU-SRIR DB)2 and Freesound Dataset
50k (FSD50K) [26]. The data generator and the data of spatial room
impulse response (SRIR) and noise are used to synthesize a part of
the training data for DCASE2023 Challenge Task 3. While the syn-
thetic data for the challenges chose FSD50K samples to match the
target classes, our training data for zero- and few-shot SELD tasks
used all the FSD50K training samples. Finally, 2,250 one-minute
spatial mixtures are synthesized using the measured SRIRs and noise
from nine rooms and the samples from FSD50K.

As an evaluation dataset for the zero- and few-shot SELD tasks,
we use the development set of STARSS23 [6, 23]. The recordings
contain 13 target sound event classes such as footsteps and bell. The
development set of STARSS23 totals about 7 hours and 22 min-
utes, of which 168 clips are recorded with 57 participants in 16
rooms. The development set is further split into dev-set-train
(90 clips) and dev-set-test (78 clips). K-shot audio samples
of the 13 target classes are extracted from dev-set-train in the
few-shot setting, while the zero-shot setting does not use audio sam-
ples. We use dev-set-test as query sequences in the evaluation.

The proposed methods can use other sets of target classes with-
out re-training. To check the performance in another dataset, we pre-
pare the development set of TNSSE21 [5] as an additional evaluation
dataset. The data are synthesized by adding sound event samples
convolved with SRIR to spatial ambient noise. The SRIRs and am-
bient noise recordings are collected at 15 different indoor locations.
The sound event samples consist of 12 event classes, such as crying
baby and barking dog. The dataset contains 600 one-minute sound
scene recordings: 400 for training, 100 for validation, and 100 for
testing. K-shot audio samples are extracted from the training split
in the few-shot setting. We omit the validation split and use the test
split as query sequences.

Following the setup, five metrics are used for the evaluation [27].
The first two metrics are the location-dependent error rate ER20◦

and F-score F20◦ , where predictions are considered true positives
only when the distance from the reference is less than 20◦. The next
is the localization error LECD , which expresses the average angular
distance between the same class’s predictions and references. The
fourth is a simple localization recall metric LRCD , which tells the
true positive rate of how many of these localization estimates are
detected in a class out of the total number of class instances. We
also adopt an aggregated SELD error, ESELD, which is defined as

ESELD =
ER20◦ + (1− F20◦) +

LECD
180◦ + (1− LRCD)

4
. (17)

1https://github.com/danielkrause/DCASE2022-data-generator
2https://zenodo.org/record/6408611
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Table 1. SELD performance of zero- and few-shot methods evaluated for the test split of the STARSS23 development set.
Method # of shots ER20◦ F20◦ LECD LRCD ESELD

Combination of CLAP and DOAE Zero 0.860 11.2 38.4 40.8 0.638
Few 10 0.837 14.3 36.2 46.5 0.607

Embed-ACCDOA (proposed) Zero 0.835 15.8 55.2 29.9 0.671
Few 10 0.777 19.3 27.0 34.1 0.598

Combination of CLAP and Embed-ACCDOA (proposed) Zero 0.773 18.7 51.9 36.1 0.628
Few 10 0.756 19.2 35.0 40.2 0.589

Official baseline trained with full training dataset (Full) (0.594) (29.4) (23.4) (49.8) (0.483)

4.2. Experimental settings

The embed-ACCDOA model uses the EINV2 network architec-
ture [9] with slight modification. The difference between the original
and the one used here is the output size of the final fully connected
layer in the embedding branch, i.e., from the number of classes
to the embedding size. The embedding size is 512, following a
previous CLAP implementation [16]. The number of tracks in the
embed-ACCDOA format is fixed at 3. The loss coefficients for
embedding and ACCDOA are set to 0.6 and 0.4, respectively. We
set the threshold for the track with the highest activity to 0.2. We
also set the threshold for the other tracks to 0.8.

We compare the embed-ACCDOA methods with a straight-
forward combination of a CLAP audio encoder [16] and a DOAE
model with a one-track one-class ACCDOA format. Since the
DOAE model outputs only one ACCDOA vector per time frame, the
network architecture of the model is set equivalent to the ACCDOA
branch of the one-track embed-ACCDOA model. The training data
is the same. The loss function is MSE between the oracle and the
estimated ACCDOA vectors. In inference, we simply assign the
ACCDOA vector output to the class output from the CLAP audio
encoder at each frame. We set the threshold to 0.2.

Other configurations mostly follow the multi-ACCDOA pa-
per [28] in all methods. Multichannel amplitude spectrograms and
inter-channel phase differences (IPDs) are used as features. Two
data augmentation methods are applied: equalized mixture data aug-
mentation (EMDA) [29] and rotation in FOA [30]. The sampling
frequency is set to 24 kHz. The short-term Fourier transform (STFT)
is applied with a 20-ms frame length and a 10-ms frame hop. Input
features are segmented to have a fixed length of 1.27 seconds. The
shift length is set to 1.2 seconds during inference. We use a batch
size of 32, and each training sample is generated on the fly. We use
the Adam optimizer with a weight decay of 10−6. We gradually
increase the learning rate to 0.001 with 25,000 iterations [31]. After
the warm-up, the learning rate is decreased by 10% if the SELD error
of the validation did not improve in 20,000 consecutive iterations.
We validate and save model weights every 5,000 iterations up to
200,000. Finally, we apply stochastic weight averaging (SWA) [32]
to the last ten models.

We also run the official baseline systems for reference [5]. Note
that the baseline systems are trained with full training datasets, while
our methods take only zero- or few-shot samples of the target classes.

4.3. Experimental results

Table 1 summarizes the performance of the zero- and few-shot meth-
ods in the development set of STARSS23. The embed-ACCDOA
model shows a similar SELD error to the combination of the CLAP
audio encoder and the DOAE model. While the combination of
DOAE and CLAP performs better in localization recall, the embed-
ACCDOA model performs better in the location-dependent error
rate and F-score. The proposed combination of the CLAP audio
encoder and the embed-ACCDOA model achieves the best SELD
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 e
rr
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Fig. 4. SELD performance of the combination of the CLAP audio
encoder and embed-ACCDOA model for STARSS23 with different
numbers of shots.

Table 2. SELD performance of zero- and few-shot methods evalu-
ated for the test split of the TNSSE21 development set.

Method # of shots ER20◦ F20◦ LECD LRCD ESELD

CLAP and Embed-ACCDOA Zero 1.008 25.8 26.2 46.9 0.607
Few 10 1.009 24.9 31.0 51.5 0.604

Official baseline (Full) (0.706) (26.0) (37.0) (40.4) (0.562)

error among the zero- and few-shot methods. The proposed combi-
nation tackles overlapping cases while borrowing the detection per-
formance of the CLAP audio encoder in single-source cases. While
gaps exist between the official baseline system trained with complete
train data and the zero- and few-shot systems, the proposed methods
show promising results without re-training on the target classes.

Fig. 4 shows the performance of the combination of CLAP and
embed-ACCDOA with different numbers of shots. When the num-
ber increases, the method improves performance. The zero-shot per-
formance is better than the 1-shot and comparable to the 3-shot.

Table 2 lists the performance of the zero- and few-shot SELD
methods in the development set of TNSSE21. We use the same
model as the experiments on STARSS23 to check the capability of
adapting to another dataset with zero- and few-shot samples. The
proposed method without re-training achieves comparable results to
the official baseline system trained with complete train data.

5. CONCLUSION

We investigate zero- and few-shot sound event localization and de-
tection (SELD) tasks, which enable us to customize the target classes
of SELD systems with only a text sample or a few audio samples.
While zero-shot sound classification tasks are achieved by embed-
dings from contrastive language-audio pretraining (CLAP) models,
zero-shot SELD tasks require the assignment of an activity and a
direction-of-arrival (DOA) to each embedding, especially in over-
lapping cases. To address the assignment problem in overlapping
cases, we propose an embed-ACCDOA model, which is trained to
output track-wise CLAP embedding and associated activity-coupled
Cartesian DOA (ACCDOA). In our experimental evaluations on the
zero- and few-shot SELD tasks, the embed-ACCDOA model shows
a better location-dependent error rate and F-score than the straight-
forward combination of the CLAP audio encoder and the DOA esti-
mation model. Moreover, the proposed combination of the embed-
ACCDOA model and the CLAP audio encoder with zero- or few-
shot samples shows comparable performance to the official baseline
system trained with complete train data in an evaluation dataset. We
will conduct comprehensive experiments in the future.

639



6. REFERENCES

[1] M. Crocco, M. Cristani, A. Trucco, and V. Murino, “Audio
surveillance: A systematic review,” ACM Computing Surveys,
vol. 48, no. 4, pp. 1–46, 2016.

[2] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental sound
recognition with time–frequency audio features,” IEEE Trans.
on ASLP, vol. 17, no. 6, pp. 1142–1158, 2009.

[3] N. Yalta, K. Nakadai, and T. Ogata, “Sound source localization
using deep learning models,” Journal of Robotics and Mecha-
tronics, vol. 29, no. 1, pp. 37–48, 2017.

[4] H. Sun, X. Liu, K. Xu, J. Miao, and Q. Luo, “Emergency vehi-
cles audio detection and localization in autonomous driving,”
arXiv, 2021.

[5] A. Politis, S. Adavanne, D. Krause, A. Deleforge, P. Srivas-
tava, and T. Virtanen, “A dataset of dynamic reverberant sound
scenes with directional interferers for sound event localization
and detection,” in Proc. of DCASE Workshop, 2021.

[6] A. Politis, K. Shimada, P. Sudarsanam, S. Adavanne,
D. Krause, Y. Koyama, N. Takahashi, S. Takahashi, Y. Mitsu-
fuji, and T. Virtanen, “STARSS22: A dataset of spatial record-
ings of real scenes with spatiotemporal annotations of sound
events,” in Proc. of DCASE Workshop, 2022.

[7] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound
event localization and detection of overlapping sources using
convolutional recurrent neural networks,” IEEE JSTSP, vol. 13,
no. 1, pp. 34–48, 2018.

[8] K. Shimada, Y. Koyama, N. Takahashi, S. Takahashi, and
Y. Mitsufuji, “ACCDOA: Activity-coupled cartesian direction
of arrival representation for sound event localization and detec-
tion,” in Proc. of IEEE ICASSP, 2021.

[9] Y. Cao, T. Iqbal, Q. Kong, F. An, W. Wang, and M. D. Plumb-
ley, “An improved event-independent network for polyphonic
sound event localization and detection,” in Proc. of IEEE
ICASSP, 2021.

[10] O. Slizovskaia, G. Wichern, Z.-Q. Wang, and J. Le Roux, “Lo-
cate this, not that: Class-conditioned sound event doa estima-
tion,” in Proc. of IEEE ICASSP, 2022.

[11] J. Hu, Y. Cao, M. Wu, F. Yang, Z. Yu, W. Wang, M. D. Plumb-
ley, and J. Yang, “META-SELD: Meta-learning for fast adap-
tation to the new environment in sound event localization and
detection,” in Proc. of DCASE Workshop, 2023.

[12] J. S. Kim, H. J. Park, W. Shin, and S. W. Han, “AD-YOLO:
You look only once in training multiple sound event localiza-
tion and detection,” in Proc. of IEEE ICASSP, 2023.

[13] Q. Wang, J. Du, Z. Nian, S. Niu, L. Chai, H. Wu, J. Pan, and
C.-H. Lee, “Loss function design for DNN-based sound event
localization and detection on low-resource realistic data,” in
Proc. of IEEE ICASSP, 2023.

[14] S. Niu, J. Du, Q. Wang, L. Chai, H. Wu, Z. Nian, L. Sun,
Y. Fang, J. Pan, and C.-H. Lee, “An experimental study on
sound event localization and detection under realistic testing
conditions,” in Proc. of IEEE ICASSP, 2023.

[15] B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, “CLAP:
Learning audio concepts from natural language supervision,”
in Proc. of IEEE ICASSP, 2023.

[16] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and
S. Dubnov, “Large-scale contrastive language-audio pretrain-
ing with feature fusion and keyword-to-caption augmentation,”
in Proc. of IEEE ICASSP, 2023.

[17] S. S. Kushwaha and M. Fuentes, “A multimodal prototypical
approach for unsupervised sound classification,” arXiv, 2023.

[18] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al.,
“Learning transferable visual models from natural language su-
pervision,” in Proc. of ICML, 2021.

[19] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object
detection via vision and language knowledge distillation,” in
Proc. of ICLR, 2022.

[20] S.-Y. Chou, K.-H. Cheng, J.-S. R. Jang, and Y.-H. Yang,
“Learning to match transient sound events using attentional
similarity for few-shot sound recognition,” in Proc. of IEEE
ICASSP, 2019.

[21] Y. Wang, J. Salamon, N. J. Bryan, and J. P. Bello, “Few-shot
sound event detection,” in Proc. of IEEE ICASSP, 2020.

[22] K. Shimada, Y. Koyama, and A. Inoue, “Metric learning with
background noise class for few-shot detection of rare sound
events,” in Proc. of IEEE ICASSP, 2020.

[23] K. Shimada, A. Politis, P. Sudarsanam, D. Krause, K. Uchida,
S. Adavanne, A. Hakala, Y. Koyama, N. Takahashi, S. Taka-
hashi et al., “STARSS23: An audio-visual dataset of spatial
recordings of real scenes with spatiotemporal annotations of
sound events,” in Proc. of NeurIPS, 2023.

[24] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in Proc. of NeurIPS, 2017.

[25] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-
stitch networks for multi-task learning,” in Proc. of IEEE
CVPR, 2016.

[26] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50k:
An open dataset of human-labeled sound events,” IEEE/ACM
Trans. on ASLP, vol. 30, pp. 829–852, 2021.

[27] A. Mesaros, S. Adavanne, A. Politis, T. Heittola, and T. Virta-
nen, “Joint measurement of localization and detection of sound
events,” in Proc. of IEEE WASPAA, 2019.

[28] K. Shimada, Y. Koyama, S. Takahashi, N. Takahashi,
E. Tsunoo, and Y. Mitsufuji, “Multi-ACCDOA: Localizing and
detecting overlapping sounds from the same class with aux-
iliary duplicating permutation invariant training,” in Proc. of
IEEE ICASSP, 2022.

[29] N. Takahashi, M. Gygli, and L. Van Gool, “AENet: Learning
deep audio features for video analysis,” IEEE Trans. on Multi-
media, vol. 20, pp. 513–524, 2017.

[30] L. Mazzon, Y. Koizumi, M. Yasuda, and N. Harada, “First or-
der ambisonics domain spatial augmentation for DNN-based
direction of arrival estimation,” in Proc. of DCASE Workshop,
2019.

[31] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large mini-
batch SGD: Training ImageNet in 1 hour,” arXiv, 2017.

[32] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G.
Wilson, “Averaging weights leads to wider optima and better
generalization,” in Proc. of UAI, 2018.

640


