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ABSTRACT
This paper describes an automatic calibration method that lo-
calizes and synchronizes distributed camera-attached micro-
phone arrays (e.g., Microsoft Azure Kinect) used for audio-
visual indoor scene analysis. Operating multiple audio-visual
sensors as a large-scale array is a key to resolving object oc-
clusions and sound overlaps by integrating audio-visual infor-
mation obtained from multiple angles. A naive solution to the
calibration problem is to synchronize microphone arrays after
localizing them using only visual information. This cascad-
ing approach, however, would suffer from the error propaga-
tion problem. We thus propose a principled statistical method
that fully uses audio-visual information at once. Our method
only asks a user to make handclaps and jointly estimates the
sensor positions and time offsets and the time-varying source
position with the GraphSLAM algorithm based on a unified
state-space model associating all the latent calibration targets
with the audio-visual observations. The experiment using real
recordings shows the stable behavior of the proposed method.

Index Terms— Audio-visual scene analysis, calibration,
localization, synchronization, and microphone array.

1. INTRODUCTION

Computational audio-visual scene analysis forms the basis of
machine intelligence. It covers a wide variety of research top-
ics such as detection, localization, and classification of salient
objects and events [1–4]. These tasks had typically been tack-
led by using either audio or visual information and the multi-
modal approach has recently become popular at the intersec-
tion of the fields of audio signal processing and computer vi-
sion. The underlying common assumption is that audio-visual
sensors (e.g., RGB/depth cameras and microphones) are cali-
brated, i.e., these sensors are synchronized and their positions
are measured precisely, in advance of scene analysis.

In this paper we focus on the portability of an intelligent
spoken dialogue system (e.g., humanoid robot [5]) that can
make multi-party conversations in indoor environments. Such
a system should be capable of speaker diarization (detection
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Fig. 1. Automatic calibration of camera-attached microphone
arrays through observation of a movable sound source.

and identification of active speakers) [6,7] and localization [8]
and distant speech recognition [9–11] under acoustically and
visually challenging conditions with speech overlaps and ob-
ject occlusions. One thus may use multiple cameras and mi-
crophones distributed in the environment for observing partic-
ipants from multiple angles. From a practical point of view,
the system should be easy to install, i.e., the full potential of
the system should be drawn in any environment by just plac-
ing the sensors at arbitrary positions.

Accurate and efficient automatic calibration (localization
and synchronization) of distributed audio and visual sensors is
thus a key to better indoor scene analysis. For unimodal anal-
ysis, localization of distributed cameras [12, 13] and calibra-
tion of distributed microphones [14–17], which can be viewed
as simultaneous localization and mapping (SLAM) problems,
have separately been investigated. Several multi-modal meth-
ods were proposed to calibrate distributed microphone arrays
by using multiple cameras whose positions are assumed to be
known [18, 19]. A naive way of avoiding this assumption is
to localize cameras using visual information [12,13] and then
calibrate microphone arrays using audio information [14,15].
Such a cascading approach, however, would have a perfor-
mance limitation due to the error propagation problem (sub-
optimality of the whole system). This calls for a new ap-
proach to joint calibration of audio and visual sensors.

In this paper we propose a statistical calibration method
that can jointly estimate the positions, orientations, and time
offsets of distributed asynchronous audio-visual sensors, each
of which consists of a synchronous pair of an RGB and/or
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depth camera and a microphone array. To do this, a mobile
sound source (e.g., system user) that emits reference signals
(e.g., handclaps) repeatedly is introduced. Using each sensor
solely, the directions and distances to the other sensors and
the sound source and the time differences of arrival (TDoAs)
between the sensors are acoustically or visually estimated for
each trial. We formulate a state-space model that represents
the generative process of such noisy estimates (observed vari-
ables) from the time-invariant sensor positions, orientations,
and time offsets and the time-varying source position (latent
variables). Given the observed variables, the joint posterior
distribution of the latent variables can be approximated with
an iterative optimization method called GraphSLAM [20].

The main contribution of this study is to propose the prin-
cipled approach to joint calibration of audio and visual sen-
sors based on statistical inference of a unified probabilistic
model. Our method could significantly improve the portabil-
ity and generalization capabilities of audio-visual scene anal-
ysis systems without expert knowledge and experience, hu-
man labor, and expensive measurement devices (e.g., laser
rangefinders and motion capture systems) in initial installa-
tion and configuration in a target environment.

2. RELATED WORK

This section introduces existing studies on calibration of
audio-only and audio-visual sensors.

2.1. Audio Sensor Calibration

A major approach for calibrating multiple microphones or
microphone arrays is to solve a SLAM problem using only
acoustic information. Miura et al. [14] proposed an online
calibration method of asynchronous microphones based on
extended Kalman filter (EKF)-SLAM. Using handclaps as
reference sounds, the position and time offset of each micro-
phone are estimated. Su et al. [15] proposed an offline cali-
bration method of an asynchronous microphone array. They
did not assume that the clock timing in each microphone
was exactly the same. Based on a graph-based SLAM [21]
algorithm, their method estimates clock difference of each
microphone together with the positions of sound sources and
microphones and time offsets in an offline manner. Sekiguchi
et al. [17] addressed the online calibration of asynchronous
multiple microphone arrays. Their method estimates the po-
sition and time offset of each microphone array and the sound
source position using FastSLAM [22] algorithm.

2.2. Audio-Visual Sensor Calibration

Visual information is also used for the calibration of micro-
phone arrays. Jacob et al. [18] estimated a common coordi-
nate system for audio-visual sensor networks. In this method,
a speaker is tracked by both microphone and camera net-
works. The microphone network should be calibrated by a
self-localization algorithm using the speaker’s voice tracking
at first, and the camera network is assumed to be calibrated

in advance. Then, the two modalities are embedded into a
random sample consensus (RANSAC) framework to obtain
a mapping. Plinge et al. [19] proposed a method to calibrate
multiple microphone arrays utilizing cameras with known po-
sitions installed in a room. The calibration is performed by
finding the position of the microphone arrays that minimizes
the error between the sound source positions estimated from
the microphone array observations and those obtained from
camera observations. While these methods use separately dis-
tributed cameras and microphone arrays and assume that the
camera positions are known, we remove this assumption us-
ing camera-attached microphone arrays.

3. PROPOSED METHOD

This section describes the proposed calibration method based
on a probabilistic model for localizing and synchronizing dis-
tributed camera-attached microphone arrays.

3.1. Problem Specification

We tackle the sensor calibration problem that aims to localize
and synchronize audio-visual sensors (e.g., Microsoft Azure
Kinect) used for indoor scene analysis. Suppose that N asyn-
chronous sensors are located at arbitrary positions in a room.
Each sensor consists of an RGB camera and M synchronous
microphones (microphone array) with a known geometry and
has a marker. One of the N sensors (indexed by 1 and called
the reference sensor) is allowed to additionally have a depth
camera to avoid interference of infrared rays. A movable
sound source that emits reference signals T times (e.g., a per-
son who makes handclaps) is prepared in the same room. In
practice, it is desirable that the sensors are located on the walls
of a room such that each object is observed from multiple an-
gles, i.e., the sound source is surrounded by the sensors.

We aim to estimate the state vector zn ≜ [rTn, ωn, on]
T

of each sensor n ∈ [1, N ], where rn ≜ [rxn, r
y
n]

T is the 2D
position relative to the position of the reference sensor (r1 =
0), ωn ∈ [−π, π) is the orientation, and on is the time offset
from the reference sensor (o1 = 0). We also aim to estimate
the time-varying position st ≜ [sxt , s

y
t ]

T of the sound source
at each step t ∈ [1, T ]. Let s ≜ [sT1 , · · · , sTT ]T and z ≜
[zT1 , · · · , zTN ]T be the sets of latent variables.

We assume that a set of noisy measurements and estimates
xt ≜ [qt, {qnt, τnt, θvnt, θant{ϕnn′t}n′ ̸=n}Nn=1] are obtained at
each step t as observed data, where qt is the measured dis-
tance from the reference sensor to the sound source, qnt is
the measured distance from the reference sensor to sensor
n (q1t = 0), τnt is the estimated time difference of arrival
(TDoA) of sensor n from the reference sensor (τ1t = 0),
θvnt ∈ [−π, π) and θant ∈ [−π, π) are the visually and acousti-
cally estimated directions of the sound source from sensor n,
respectively, and ϕnn′t ∈ [−π, π) is the estimated direction
of sensor n′ from sensor n. Let x ≜ [xT

1 , · · · ,xT
T ]

T be the set
of observed variables.

In practice, qt and qnt are measured with the depth camera
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of the reference sensor and τnt is estimated from the signals of
the reference sensor and sensor n with generalized cross cor-
relation with phase transform (GCC-PHAT) [23]. θvnt is es-
timated by visually detecting the marker of the sound source
from the image observed by sensor n and θant is estimated
by acoustically localizing the sound source from the multi-
channel signal of sensor n with multiple signal classification
(MUSIC) [8]. ϕnn′t is estimated by detecting the marker of
sensor n′ from the image observed by sensor n.

3.2. Probabilistic Modeling

We formulate a unified audio-visual state-space model (Fig. 2)
that represents the generative process of the time-varying ob-
served variables x from the time-varying latent variables s
and the time-invariant latent variables z as follows:

p(x, z) =

T∏
t=1

p(xt | st, z)p(st | st−1)

N∏
n=1

p(zn), (1)

where s0 is a dummy random variable introduced for mathe-
matical convenience.

Assuming that the sound source moves randomly at each
step, the source positions s can be represented with a Gaus-
sian random-walk model as follows:

p(st | st−1) = N (st | st−1,Λ
−1
s ), (2)

where Λs ≜ Diag
(
λ2
x, λ

2
y

)
is a precision matrix (hyperparam-

eter). Using prior knowledge about the sensor information z,
we assume

p(zn) = N (zn | µzn
,Λ−1

z ), (3)

where µzn
≜ [µT

rn , µωn
, µon ]

T and Λz are the mean vector
and diagonal precision matrix of the prior Gaussian distribu-
tion (hyperparameters). In practice, the sensor position rn
and orientation ωn can be roughly estimated and set to µrn

and µωn
, respectively. The time offset on is assumed to be

around zero, i.e., µon = 0.
The observations x are assumed to be Gaussian dis-

tributed around the theoretical expectations as follows:
p(xt | st, z) = N (xt | h(st, z),Λ−1

x ), (4)
where Λx is a diagonal precision matrix and h(st, z) is a non-
linear vector-output function. More specifically, each dimen-
sion of xt is assumed to be distributed as follows:

qt ∼ N
(
∥r1 − st∥, σ2

q

)
, (5)

qnt ∼ N
(
∥r1 − rn∥, σ2

qn

)
, (6)

τnt ∼ N
(
∥rn − st∥

v
+ on −

∥r1 − st∥
v

, σ2
τn

)
, (7)

θ∗nt ∼ N
(
arctan

syt − ryn
sxt − rxn

−mθ
n, σ

2
θ∗
n

)
(∗∈{v, a}), (8)

ϕnn′t ∼ N
(
arctan

ryn′ − ryn
rxn′ − rxn

−mθ
n, σ

2
ϕn

)
, (9)

where v is the sound speed, and σ2
q , σ2

qn , σ2
τn , σ2

θ∗
n

, and σ2
ϕn

are the hyperparameters that control the variance of measure-
ment errors.

Sound source position

Sensor state

Audio-visual 

observation

Time invariant

…

Depth

RGB

Mic array

MUSIC

GCC-

PHAT

Marker

detection

Latent variables

Fig. 2. Unified state-space model for audio-visual calibration.

3.3. Statistical Inference

We infer the latent variables s and z from the observed vari-
ables x using an iterative optimization method called Graph-
SLAM [20]. Let ŝt and ẑn be the current estimates of st and
zn and ẑ ≜ [ẑT1 , · · · , ẑTN ]T. Since h(st, z) is a nonlinear
function that makes the posterior inference intractable, it is
locally approximated as a linear function around ŝt and ẑn as
follows:

h(st, z) ≈ x̂t +Hŝt,ẑ([s
T
t , z

T]T − [ŝTt , ẑ
T]T), (10)

where x̂t ≜ h(ŝt, ẑ) is the predicted observation based on
the current estimates ŝt and ẑ and Hŝt = ∂h

∂st

∣∣
st=ŝt

, Hẑn
=

∂h
∂zn

∣∣
zn=ẑn

, and Hŝt,ẑ = (Hŝt ,Hẑ1
, · · · ,HẑN

) are the Jaco-
bian matrices.

Since (2), (3), and (4) with (10) are Gaussian distribu-
tions, the posterior distribution p(s, z|x) can be expressed as
a Gaussian distribution and computed as follows:

log p(s, z|x)

= −1

2

T∑
t=1

[sTt−1, s
T
t ]

(
Λs −Λs

−Λs Λs

)
[sTt−1, s

T
t ]

T

− 1

2

N∑
n=1

(zn − µz)
TΛz(zn − µz)

+

T∑
t=1

[sTt , z
T]HT

ŝt,ẑΛx

(
xt − x̂t +Hŝt,ẑ[ŝ

T
t , ẑ

T]T
)

− 1

2

T∑
t=1

[sTt , z
T]HT

ŝt,ẑΛxHŝt,ẑ[s
T
t , z

T]T + const

≜ N ([sT, zT]T | µ,Ω−1), (11)
where µ and Ω are the mean vector and precision matrix of
the posterior Gaussian distribution. Let Ωst−1,st be the par-
tial precision matrix over the dimensions of Ω correspond-
ing to st−1 and st and Ωst,z be defined similarly. Let ξ ≜
[ξTs1 , · · · , ξ

T
sT , ξ

T
z1
, · · · , ξTzN

]T be an auxiliary vector given by
ξ = Ωµ, where ξst,zn is the partial vector over the dimen-
sions of ξ corresponding to st and z, respectively.

Given all the observations x, we can analytically update ξ
(instead of µ) and Ω and follows:

Ωst−1,st ← Ωst−1,st +

(
Λs −Λs

−Λs Λs

)
, (12)

ξst,z ← ξst,z +HT
ŝt,ẑΛx

(
xt − x̂t +Hŝt,ẑ[ŝ

T
t , ẑ

T]T
)
, (13)
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Fig. 3. Recording environment (a) and calibration results (b)–(e). Black circles and squares show the ground truth of the sensors
and moving sources, respectively. Red circles and blue squares show the estimated sensor and sound positions, respectively.

Ωst,z ← Ωst,z +HT
ŝt,ẑΛxH

T
ŝt,ẑ, (14)

If the observation xt is partially missing (e.g., due to the out-
of-view and audio-clipping problems), (13) and (14) can be
performed by deleting the corresponding rows of Hŝt , Hẑn

,
and Λx. (12), (13), and (14) are iterated until convergence
and µ and Ω−1 are obtained from conclusive ξ and Ω. The
converged µs,z corresponds to the latent state s, z to be esti-
mated.

4. EVALUATION

This section reports the experimental evaluation of the pro-
posed method by using a real audio-visual recording.

4.1. Experimental Conditions

Three audio-visual sensors (Microsoft Azure Kinect), each
of which had seven microphones (N = 3 and M = 7),
and a moving sound source (human) were placed in an ane-
choic room (Fig. 3-(a)). Only the depth camera of sensor 1
was available and the other sensors were placed inside the
field of view of sensor 1. The sensor positions, orientations,
and time offsets and the time-varying sound source position
were estimated jointly using audio information only (Mic)
or audio-visual information with/without depth information
(Mic+RGB+D/Mic+RGB). The human made handclaps 13
times (T = 13) while moving straight as shown in Fig. 3.
When the sound source was not observed visually, only audio
information was used. The number of iterations was 100.

The hyperparameters were experimentally determined as
σ2
x = σ2

y = 1.5 [m], σq = σqn = 0.2 [m], σθa
n
= σθv

n
=

σϕ1
= 5 [deg], and σ2

τ1 = 0.004 [ms]. The diagonal ele-
ments of Λz corresponding to the sensor orientation and time
offset were set to 0.0001. The partial matrix corresponding
to the sensor position was set to (ana

T
n + 0.1I)−1, where

an ≜ [cos(ϕ1n1), sin(ϕ1n1)]
T and I is an identity matrix.

4.2. Experimental Results

Table 1 shows the estimation errors obtained with the three
variants of the proposed method. The use of visual informa-
tion obtained from the RGB cameras significantly improved
the performance of automatic sensor calibration. The use of
the depth camera further slightly improved the performance in

Table 1. Estimation errors with different observations.

Observations Source Sensor Sensor Sensor time
pos. [m] pos. [m] orien. [deg] offset [ms]

Mic 0.83 0.36 27.7 0.44
Mic + RGB 0.38 0.22 2.88 0.55
Mic + RGB + D 0.20 0.14 3.50 0.27
Mic + RGB + D 0.34 0.17 4.07 3.68

this experimental setting. The lack use of audio information,
i.e., using only visual information (RGB+D), degraded the
performance, especially of the sensor time offset estimation.
When the cameras failed to detect the marker of the sound
source, the visual information could naturally be treated as
missing data. This is one of the main advantages of the pro-
posed statistical approach based on the unified state-space
model. Our calibration method is thus considered to make
an audio-visual scene analysis system compact, portable, and
easy-to-use, because it works well even when the depth cam-
era is unavailable.

5. CONCLUSION

This paper described an automatic calibration method for dis-
tributed camera-attached microphone arrays using a moving
sound source as a reference. Our method is based on a uni-
fied state-space model that represents the generative process
of the audio-visual observations from the latent sensor and
source positions. The iterative GraphSLAM algorithm is used
for estimating the latent variables that maximize the poste-
rior probability. The experimental evaluation with recorded
data demonstrated that the proposed audio-visual integrated
method outperformed an audio-only method.

Future work includes online sensor calibration under dy-
namically changing conditions. The sensor arrangements and
time offsets might be gradually changed in long-term record-
ings, e.g., in a one-day-long demonstration of a robotic sys-
tem. It is thus necessary to continuously monitor and calibrate
the sensors using surrounding objects and sound events as ref-
erences, i.e., integrate sensor calibration with scene analysis
into a unified statistical framework. We also plan to demon-
strate the effectiveness of the proposed method with more re-
alistic conditions, such as highly reverberant meeting rooms
and noisy exhibition halls.
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