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ABSTRACT

The acoustic-to-word (A2W) automatic speech recognition (ASR)
realizes very fast decoding with a simple architecture and achieves
state-of-the-art performance. However, the A2W model suffers from
the out-of-vocabulary (OOV) word problem and cannot use text-
only data to improve the language modeling capability. Meanwhile,
sequence-to-sequence neural speech synthesis has also been devel-
oped and achieved naturalness comparable to human speech. We
investigate leveraging sequence-to-sequence neural speech synthe-
sis to augment training data for the ASR system in a target domain.
While speech synthesis model is usually trained with single speaker
data, ASR needs to cover a variety of speakers. In this work, we
extend the speech synthesizer so that it can output speech of many
speakers. The multi-speaker speech synthesizer is trained with a
large corpus in the source domain, then used to generate acoustic
features from texts of the target domain. These synthesized speech
features are combined with real speech features of the source domain
to train an attention-based A2W model. Experimental results show
that the A2W model trained with the multi-speaker model achieved
a significant improvement over the baseline and the single speaker
model.

Index Terms— Sequence-to-sequence speech recognition,
Sequence-to-sequence speech synthesis, acoustic-to-word model,
training data augmentation, multi-speaker speech synthesis

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) systems which di-
rectly convert acoustic features into a character or word sequence are
very attractive since they have so simple architecture that we can de-
sign and develop easily. In the end-to-end ASR systems, connection-
ist temporal classification (CTC) approaches [1, 2] and sequence-
to-sequence (seq2seq) approaches such as RNN-transducers and
attention-based encoder-decoder models [3, 4, 5, 6] have been inves-
tigated intensively. These approaches generate a symbol sequence
without requiring latent state transition models such as HMMs.
With regard to the output units of ASR, acoustic-to-word (A2W)
models [2, 7, 8, 9] which directly map acoustic features into a word
sequence realizes very fast decoding since they do not require any
external decoders. We have demonstrated in [10] that an attention-
based A2W model achieved word error rate (WER) reduction of
25.3% relative from a state-of-the-art hybrid DNN-HMM system
with decoding speed faster by a factor of 50.

However, A2W models have some drawbacks compared to
phone-based and character-based models. The most critical problem
is that they cannot recognize words which do not appear in the train-
ing data by adding new word entries after training. Furthermore,
the A2W model requires a huge amount of paired data of speech

and transcripts. In conducting domain adaptation, word entries of
the source domain are often different from that of the target domain
and we cannot assume a large data set for the target domain. These
problems imply that it is difficult for the A2W model to be adapted
to a new target domain. Even if a reasonably large text corpus is
available for the target domain, it cannot be fully utilized to improve
the language model, when there is a big mismatch in the vocabulary
between two domains.

To address this problem, we investigate utilizing speech synthe-
sis to generate acoustic features for training A2W models from the
target domain texts [11]. Recently, seq2seq neural speech synthe-
sis models have also been developed [12, 13, 14, 15]. In contrast
to the conventional text-to-speech (TTS), seq2seq speech synthesis
realizes TTS with a very simple architecture and its training is much
easier. Moreover, it has shown to achieve naturalness comparable
to human speech [13, 15]. Therefore, it is expected to synthesize
speech data usable for ASR model training. The synthesized data
makes it possible to cover the target domain vocabulary and to pre-
dict probabilities for words which did not appear in the source do-
main. However, a speech synthesizer is usually trained with a single
speaker and does not have a diversity of speakers. This may be a
serious problem for ASR, which needs to cover a variety of speak-
ers. In this work, we extend our speech synthesis framework to con-
tribute to developing multi-speaker speech using speaker embedding
in seq2seq speech synthesis. By training the speech synthesizer with
a large number of speakers, it is expected to generate more “realis-
tic” speech data for ASR model training, and eventually solve the
data sparseness problem.

In the rest of the paper, we first review the seq2seq model for
ASR and TTS in Section 2. Section 3 gives explanations of the pro-
posed multi-speaker seq2seq speech synthesis for data augmentation
in A2W ASR. Experimental evaluations using the Corpus of Spon-
taneous Japanese (CSJ) are presented in Section 4.

2. SEQ2SEQ MODEL FOR ASR AND TTS

2.1. Attention-based seq2seq model

The attention-based seq2seq encoder-decoder model has two distinct
networks. One is an encoder network, which makes a distributed
representation from the input sequence. The other is a decoder net-
work, which predicts a label sequence using the intermediate repre-
sentation. The decoder uses only a relevant portion of the encoded
sequential representation for predicting a label at each time step us-
ing the attention mechanism. In this work, we use multi-layer bidi-
rectional LSTM for the encoder, and a single layer unidirectional
LSTM followed by a softmax layer and the location-sensitive at-
tention mechanism [4] for the decoder. The LSTM-based decoder
predicts the next symbol using a history of previous symbols, thus
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it substantially includes a language model. The objective function
for training the attention model is cross entropy loss between the
predicted label sequence and the target label sequences.

2.2. Acoustic-to-Word (A2W) ASR

A2W model maps acoustic features into a word sequence directly.
It can realize simple and fast decoding without external processes.
However, this model requires a huge amount of pair data of speech
and text since the output nodes correspond to all lexical entries.
This training problem is mitigated by the multi-task training with
the character model [16]. The other problem is that it is not possible
to add new word entries unlike subword-based systems. Moreover,
the model cannot leverage text-only data which is usually available
in a large scale and in a new domain. Although a separate language
model can be trained with the text data, it is not straightforward for
the A2W model to combine it in decoding as in [17, 18] since the
vocabulary of the A2W model cannot be updated according to the
language model. This is a serious problem when adapting the A2W
model to a new domain using text-only data.

2.3. Seq2seq speech synthesis

Seq2Seq speech synthesis generates speech from a character or
phone sequence. It has a much simpler architecture than the con-
ventional speech synthesis, which requires many modules and man-
power. Recently, these systems achieve a very high mean opinion
score (MOS), comparable to human speech [13].

In this work, we use Tacotron 2 [13] based model, which is
composed of an encoder-decoder network with an attention mech-
anism and a WaveNet-based vocoder network. The encoder-decoder
network generates acoustic features or vocoder parameters from a
phone or character sequence. The vocoder network synthesizes a
waveform from these predicted features. Note that we do not use the
vocoder network in this work since we only need mel-spectrogram
for training ASR models. The encoder network maps into a dis-
tributed representation from a character sequence via character em-
bedding, three convolution layers, and one-layer BiLSTM. The de-
coder network predicts five consecutive frames of log mel-scale filter
bank (lmfb) features at each decoding step using a location-sensitive
attention mechanism [4].

3. PROPOSED METHOD

3.1. Leveraging seq2seq speech synthesis for A2W ASR

For efficient training and adaptation of an A2W ASR model to a
new domain using text-only data, we have investigated leveraging
seq2seq speech synthesis to augment the training data . We collect
texts from a target domain where we want to perform speech recog-
nition. The sequence of phones and special symbols representing
the word boundaries are fed into the seq2seq speech synthesizer to
generate a sequence of lmfb features of the sentence. The set of
the synthesized lmfb features and corresponding word sequences are
added to the baseline training data of the real speech corpus. This
scheme makes it possible to train an A2W model from arbitrary sen-
tences. It also allows for expanding the vocabulary and improves
language model. Moreover, this scheme makes it possible to con-
duct shallow fusion [18] of the A2W model and the language model
since the vocabulary of the two models becomes matched.

There are several other works to leverage text-only data for end-
to-end ASR training. Renduchintala et. al. [19] investigated feeding
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Fig. 1. The multi-speaker speech synthesizer. In the encoder net-
work, convolution inputs are the sum of phone embedding and
speaker embedding. In the decoder network, speaker embedding is
used to initialize the hidden state of LSTM for each previous time
step.

text data to train a seq2seq ASR model via special encoding with-
out converting to speech features. Sriram et. al. [20] showed that
leveraging a pre-trained language model during seq2seq ASR train-
ing made the model converge faster and transfer to a new domain.
Moreover, the combination of seq2seq ASR and TTS has been in-
vestigated in [21, 22] to realize a deep learning-based speech chain
model. The novelty of our work is that we exploit seq2seq speech
synthesis for enhancing the A2W model in a direct and effective
manner.

3.2. Multi-speaker seq2seq speech synthesis

As in our previous work [11], the speech synthesizer is trained with
only one speaker. The synthesized speech has no diversity and is not
appropriate for training ASR models which need to cover a variety of
speakers. In [11], we also confirmed the effectiveness of the encoder
freezing [23], in which the parameters of the acoustic encoder were
copied from the model pre-trained with real speech, and they were
fixed during training using the augmented data set consisting of the
artificial and real data. This results showed that the monochromatic
speech would be harmful for learning the A2W encoder network.

In order to generate a variety of speech for ASR training, we
design speech synthesis trained with a large corpus containing many
speakers. Several multi-speaker synthesizers have been proposed in
the context of TTS. In [12, 14], the speaker embedding was used
across encoder, decoder, and vocoder. Jia et. al. [24] used a fixed-
dimensional embedding vector known as d-vector [25]. Inspired by
[12], we add speaker embedding to the Tacotron 2 architecture as
shown in Fig. 1. In the encoder network, the speaker embedding is
added as a bias to the convolution output after a softsign function. In
the decoder network, after a softsign function, the speaker embed-
ding is also added as a bias to the 2-layer pre-net output. Training a
speech synthesizer using a multi-speaker corpus is much more dif-
ficult than training with a single speaker corpus. In fact, the multi-
speaker model with random initialization did not converge in our
experiment. In this work, we pre-trained a model with a large single
speaker corpus before training the multi-speaker model. Therefore,
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Fig. 2. The overall flow of the data augmentation method leveraging
multi-speaker speech synthesis. (1) train multi-speaker synthesizer,
(2) generate lmfb features, and (3) learn the A2W model using both
of real speech and synthesized speech.

we do not concatenate speaker embedding with the other output, but
use it as a bias.

Fig. 2 shows an overall flow of the data augmentation method
leveraging the multi-speaker speech synthesis. First, we train the
synthesizer using the source domain corpus which has many speak-
ers. In this training, we use speaker embedding. Second, we generate
acoustic features from texts in the target domain. We can generate
speech of a variety of speakers from the same sentence by randomly
choosing the speaker id. Finally, we learn the A2W model using
both of real speech and synthesized speech.

4. EXPERIMENTAL EVALUATIONS

4.1. Data sets and tasks

We use a standard large-scale Japanese corpus named the Corpus of
Spontaneous Japanese (CSJ) [26]. CSJ has two distinct sub-corpora,
CSJ-APS and CSJ-SPS. CSJ-APS consists of academic presentation
speeches and has 986 speakers (male: 809, female: 177) with the
total duration of 247.9 hours for training. CSJ-SPS consists of sim-
ulated presentation speeches on three general themes and has 1704
speakers (male: 799, female: 905) with the total duration of 281
hours. These subsets have their own official test sets, namely, CSJ-
TESTSET1 and CSJ-TESTSET3. The vocabulary consists of all dis-
tinct words occurring more than twice in the training data and special
tokens such as 〈sos〉, 〈eos〉, and 〈UNK〉. The vocabulary sizes are
19146 for APS, 24826 for SPS, and 34331 for APS and SPS respec-
tively. The number of shared word entries in APS and SPS is 11446.

4.2. System configuration

4.2.1. A2W model

We used a 40-channel log mel-scale filter bank (lmfb) outputs as
acoustic features for A2W models. Non-overlapping frame stack-
ing [27] was applied to these features, in which we stacked and
skipped three frames to make a new super-frame. The acoustic en-
coder consists of five layers of bidirectional LSTMs with 320 cells.
The dropout [28] rate was 0.2 for training each BiLSTM layer. The

attention-based A2W decoder consists of one-layer unidirectional
LSTM with 320 cells, a hidden layer with 320 tanh nodes, and a
softmax output layer for word entries. We used Adam [29] opti-
mizer with a standard setting and gradient clipping with a threshold
of 5.0. We also used label smoothing [30] for regularization. The
beam width was set to be 4 in decoding. For the language model
integration with shallow fusion, we trained neural language models
with 3 layers of unidirectional LSTMs with 256 memory cells. Each
word is mapped to a 512-dimensional continuous vector before fed
to LSTMs. We used PyTorch [31] to implement the A2W models.

4.2.2. Multi-speaker speech synthesizer

In the original Tacotron 2, the input is a character sequence, the out-
put is an 80-dim mel-spectrogram, and the loss function is the mean
squared error (MSE) of the mel-spectrogram. In this work, however,
the input is a phone sequence, the output is 40-dim lmfb features, and
the loss function is L1 loss. As the 40-dim lmfb features are used for
our A2W recognition system, we can use an output sequence from
the synthesizer directly as input to the A2W model.

For word segmentation and pronunciation annotation of texts,
we used Mecab1, a CRF-based Japanese morphological analyzer.
We used 33 phone classes including special tokens for pause, word
boundary and the end of a sentence. The phone encoder consists
of a 512-dimensional phone embedding, a 256-dim speaker embed-
ding, three convolution layers with 512 filters and one-layer bidirec-
tional LSTM with 256 cells. The encoder outputs are summarized
using the location-sensitive attention mechanism [4]. The attention
weight at each decoding step is calculated using the 128-dimensional
projected vectors of the decoder LSTM state, the encoder output
sequence, and the location features. The location features are cal-
culated by convolving 32 one-dimensional convolution filters with
length 31 to the cumulative vector of the attention weights in all
past decoding steps. Meanwhile, the last one frame of prediction
in the last time step is passed through a pre-net consisting of two
fully-connected layers with 256 ReLU units. This pre-net output is
summed with the speaker embedding and the encoded representa-
tion with the attention vector to be provided to 2-layer unidirectional
LSTMs with 1024 memory cells. The LSTM outputs together with
the attention context vector are passed through a linear projection
layer to predict five frames of the target lmfb features. We also used
PyTorch [31] to implement the speech synthesizer.

We first pre-trained a model using the JSUT (Japanese speech
corpus of Saruwatari Laboratory, University of Tokyo) corpus [32],
which is a recording of 7,607 prompt texts read aloud by a female
speaker with the total duration of ten hours. This single speaker
model is also used for a reference. After that, we fine-tuned the pre-
train model using the source domain corpus of a thousand speakers.
When we synthesize speech features, a speaker id is chosen ran-
domly to generate speech features given a sentence text.

4.3. Results

We chose one sub-corpora as a source domain and the other as a
target domain. Using the source domain data, we trained the baseline
ASR model and the multi-speaker speech synthesizer. In the target
domain, we use only transcription data for adaptation. We generated
speech data from the texts of the target domain and re-trained the
A2W model using the augmented data.

Fig. 3 shows synthesized lmfb features generated by the multi-
speaker model. The multi-speaker model was trained using CSJ-

1http://taku910.github.io/mecab
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Table 1. ASR performance (WER (%)) for CSJ-APS and CSJ-SPS testset. In this table, “Source” is APS and “Target” is SPS. “(single
speaker)” means that we trained speech synthesizer using a single speaker female corpus. “(multi-speaker)” means that we trained speech
synthesizer using the source-domain corpus. “+ LM integration” is shallow fusion with the language model which is trained using both of the
source and target domain.

Training data Source (APS) Target (SPS) + LM integration

Source real + target real (oracle) 10.35 9.06 9.00

Source real only [baseline] 12.30 19.22 18.84
Source real + target TTS (single speaker) [reference] 11.89 14.64 14.16
Source real + target TTS (multi-speaker in source domain) [proposed] 11.43 13.37 13.27

Table 2. ASR performance (WER (%)) for CSJ-APS and CSJ-SPS testset. In this table, “Source” is SPS and “Target” is APS.

Training data Source (SPS) Target (APS) + LM integration

Source real + target real (oracle) 9.06 10.35 10.24

Source real only [baseline] 9.69 23.30 23.14
Source real + target TTS (single speaker) [reference] 9.86 18.74 18.24
Source real + target TTS (multi-speaker in source domain) [proposed] 9.36 16.68 15.94

SPS, and generated acoustic features from a sentence text in CSJ-
APS for three speakers. We first confirmed that the multi-speaker
model could output speech of a variety of speakers as these lmfb
features were different in the length of speech and the spectrum char-
acteristics.

Table 1 and Table 2 show the ASR performance in word error
rate (WER) for the CSJ-APS and the CSJ-SPS test sets. In Table 1,
the source domain is CSJ-APS and the target domain is CSJ-SPS
with 213-hour synthesized data. The OOV rate in the CSJ-SPS test
set with the baseline APS model is 3.53%, but it is reduced to 1.21%
by incorporating the texts of SPS. In Table 2, the source domain is
CSJ-SPS and the target domain is CSJ-APS with 209-hour synthe-
sized data. The OOV rate in the CSJ-APS test set with the baseline
SPS model is 4.28%, but it is reduced to 0.85% by incorporating the
texts of APS. The duration of synthesized speech is different from
that of real speech since the speech synthesizer also estimates the
length of speech for a given text.

We confirmed that the WER of the baseline model was very
high, and the model augmented with the synthesized speech using
the single speaker achieved a large improvement as the model can
recognize the words which do not appear in the original training data.
Our proposed multi-speaker model achieved a further significant im-
provement for the target domain and also yielded a small improve-
ment for the source domain. This shows the multi-speaker synthe-
sized speech provides more meaningful training data than the single
speaker when the multi-speaker model generate the same amount of
augmented data. However, when we generate speech features with
two speakers from each sentence, the proposed models did not im-
prove the performance. In other words, synthesizing speech from
a sentence for the first time is effective for enhancing the language
model capability. There is still a gap from the oracle performance
trained with the real speech. This suggests that the synthesized
speech does not have a variety of the real speech.

In addition to the A2W model, we can use the external language
model with the enhanced vocabulary in shallow fusion. The lan-
guage model using both of APS and SPS was trained. But the vo-
cabulary was adjusted when it was applied to the source-only model.
We can see that integration of the A2W models and the external lan-
guage model was effective in all cases. However, the fusion with the

Fig. 3. Sample of synthesized log mel-scale filter bank features. We
selected different speakers to generate acoustic features from a dis-
fluent transcript “kako no kaNkyo: de ka kaNkyo: ka de no, kyo:iku
to ka surikomi ga”.

source-only model is still far behind the proposed method. The result
demonstrates the language model integration alone cannot conduct
so effective adaptation as the data augmentation.

5. CONCLUSION

In this work, we designed a multi-speaker seq2seq speech synthesis
for augmenting training data for the A2W ASR model. We could
train it with a large speech corpus containing many speakers to gen-
erate speech data of a variety of speakers. This augmentation method
achieved a large improvement in domain adaptation, and the multi-
speaker model improved the ASR performance of the A2W model
compared to the single speaker model, showing that it can generate
useful data for ASR training. Moreover, we also demonstrated that
integration of the language model with shallow fusion yielded a fur-
ther improvement. We are investigating the further improvement of
speaker representation in multi-speaker speech synthesis to fill the
gap from real speech data.
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